<body><script type="text/javascript"> //<![CDATA[ try{(function(a){var b="http://",c="news.mongabay.com",d="/cdn-cgi/cl/",e="img.gif",f=new a;f.src=[b,c,d,e].join("")})(Image)}catch(e){} //]]> </script> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home / Archive
Nature Blog Network


    Scottish and Southern Energy plc, the UK's second largest power company, has completed the acquisition of Slough Heat and Power Ltd from SEGRO plc for a total cash consideration of £49.25m. The 101MW CHP plant is the UK’s largest dedicated biomass energy facility fueled by wood chips, biomass and waste paper. Part of the plant is contracted under the Non Fossil Fuel Obligation and part of it produces over 200GWH of output qualifying for Renewable Obligation Certificates (ROCs), which is equivalent to around 90MW of wind generation. Scottish & Southern Energy - January 2, 2007.

    PetroChina Co Ltd, the country's largest oil and gas producer, plans to invest 800 million yuan to build an ethanol plant in Nanchong, in the southwestern province of Sichuan, its parent China National Petroleum Corp said. The ethanol plant has a designed annual capacity of 100,000 tons. ABCMoneyNews - December 21, 2007.

    Mexico passed legislation to promote biofuels last week, offering unspecified support to farmers that grow crops for the production of any renewable fuel. Agriculture Minister Alberto Cardenas said Mexico could expand biodiesel faster than ethanol. More soon. Reuters - December 20, 2007.

    Oxford Catalysts has placed an order worth approximately €700,000 (US$1 million) with the German company Amtec for the purchase of two Spider16 high throughput screening reactors. The first will be used to speed up the development of catalysts for hydrodesulphurisation (HDS). The second will be used to further the development of catalysts for use in gas to liquid (GTL) and Fischer-Tropsch processes which can be applied to next generation biofuels. AlphaGalileo - December 18, 2007.

    According to the Instituto Brasileiro de Geografia e Estatística (IBGE), Brazil's production of sugarcane will increase from 514,1 million tonnes this season, to a record 561,8 million tonnes in the 2008/09 cyclus - an increase of 9.3%. New numbers are also out for the 2007 harvest in Brazil's main sugarcane growing region, the Central-South: a record 425 million tonnes compared to 372,7 million tonnes in 2006, or a 14% increase. The estimate was provided by Unica – the União da Indústria de Cana-de-Açúcar. Jornal Cana - December 16, 2007.

    The University of East Anglia and the UK Met Office's Hadley Centre have today released preliminary global temperature figures for 2007, which show the top 11 warmest years all occurring in the last 13 years. The provisional global figure for 2007 using data from January to November, currently places the year as the seventh warmest on records dating back to 1850. The announcement comes as the Secretary-General of the World Meteorological Organization (WMO), Michel Jarraud, speaks at the Conference of the Parties (COP) in Bali. Eurekalert - December 13, 2007.

    The Royal Society of Chemistry has announced it will launch a new journal in summer 2008, Energy & Environmental Science, which will distinctly address both energy and environmental issues. In recognition of the importance of research in this subject, and the need for knowledge transfer between scientists throughout the world, from launch the RSC will make issues of Energy & Environmental Science available free of charge to readers via its website, for the first 18 months of publication. This journal will highlight the important role that the chemical sciences have in solving the energy problems we are facing today. It will link all aspects of energy and the environment by publishing research relating to energy conversion and storage, alternative fuel technologies, and environmental science. AlphaGalileo - December 10, 2007.

    Dutch researcher Bas Bougie has developed a laser system to investigate soot development in diesel engines. Small soot particles are not retained by a soot filter but are, however, more harmful than larger soot particles. Therefore, soot development needs to be tackled at the source. Laser Induced Incandescence is a technique that reveals exactly where soot is generated and can be used by project partners to develop cleaner diesel engines. Terry Meyer, an Iowa State University assistant professor of mechanical engineering, is using similar laser technology to develop advanced sensors capable of screening the combustion behavior and soot characteristics specifically of biofuels. Eurekalert - December 7, 2007.

    Lithuania's first dedicated biofuel terminal has started operating in Klaipeda port. At the end of November 2007, the stevedoring company Vakaru krova (VK) started activities to manage transshipments. The infrastructure of the biodiesel complex allows for storage of up to 4000 cubic meters of products. During the first year, the terminal plans to transship about 70.000 tonnes of methyl ether, after that the capacities of the terminal would be increased. Investments to the project totaled €2.3 million. Agrimarket - December 5, 2007.

    New Holland supports the use of B100 biodiesel in all equipment with New Holland-manufactured diesel engines, including electronic injection engines with common rail technology. Overall, nearly 80 percent of the tractor and equipment manufacturer's New Holland-branded products with diesel engines are now available to operate on B100 biodiesel. Tractor and equipment maker John Deere meanwhile clarified its position for customers that want to use biodiesel blends up to B20. Grainnet - December 5, 2007.

    According to Wetlands International, an NGO, the Kyoto Protocol as it currently stands does not take into account possible emissions from palm oil grown on a particular type of land found in Indonesia and Malaysia, namely peatlands. Mongabay - December 5, 2007.

    Malaysia's oil & gas giant Petronas considers entering the biofuels sector. Zamri Jusoh, senior manager of Petronas' petroleum development management unit told reporters "of course our focus is on oil and gas, but I think as we move into the future we cannot ignore the importance of biofuels." AFP - December 5, 2007.

    In just four months, the use of biodiesel in the transport sector has substantially improved air quality in Metro Manila, data from the Philippines Department of Environment and Natural Resources (DENR) showed. A blend of one percent coco-biodiesel is mandated by the Biofuels Act of 2007 which took effect last May. By 2009, it would be increased to two percent. Philippine Star - December 4, 2007.

    Kazakhstan will next year adopt laws to regulate its fledgling biofuel industry and plans to construct at least two more plants in the next 18 months to produce environmentally friendly fuel from crops, industry officials said. According to Akylbek Kurishbayev, vice-minister for agriculture, he Central Asian country has the potential to produce 300,000 tons a year of biodiesel and export half. Kazakhstan could also produce up to 1 billion liters of bioethanol, he said. "The potential is huge. If we use this potential wisely, we can become one of the world's top five producers of biofuels," Beisen Donenov, executive director of the Kazakhstan Biofuels Association, said on the sidelines of a grains forum. Reuters - November 30, 2007.

    SRI Consulting released a report on chemicals from biomass. The analysis highlights six major contributing sources of green and renewable chemicals: increasing production of biofuels will yield increasing amounts of biofuels by-products; partial decomposition of certain biomass fractions can yield organic chemicals or feedstocks for the manufacture of various chemicals; forestry has been and will continue to be a source of pine chemicals; evolving fermentation technology and new substrates will also produce an increasing number of chemicals. Chemical Online - November 27, 2007.

    German industrial conglomerate MAN AG plans to expand into renewable energies such as biofuels and solar power. Chief Executive Hakan Samuelsson said services unit Ferrostaal would lead the expansion. Reuters - November 24, 2007.

    Analysts think Vancouver-based Ballard Power Systems, which pumped hundreds of millions and decades of research into developing hydrogen fuel cells for cars, is going to sell its automotive division. Experts describe the development as "the death of the hydrogen highway". The problems with H2 fuel cell cars are manifold: hydrogen is a mere energy carrier and its production requires a primary energy input; production is expensive, as would be storage and distribution; finally, scaling fuel cells and storage tanks down to fit in cars remains a huge challenge. Meanwhile, critics have said that the primary energy for hydrogen can better be used for electricity and electric vehicles. On a well-to-wheel basis, the cleanest and most efficient way to produce hydrogen is via biomass, so the news is a set-back for the biohydrogen community. But then again, biomass can be used more efficiently as electricity for battery cars. Canada.com - November 21, 2007.

    South Korea plans to invest 20 billion won (€14.8/$21.8 million) by 2010 on securing technologies to develop synthetic fuels from biomass, coal and natural gas, as well as biobutanol. 29 private companies, research institutes and universities will join this first stage of the "next-generation clean energy development project" led by South Korea's Ministry of Commerce, Industry and Energy. Korea Times - November 19, 2007.

    OPEC leaders began a summit today with Venezuelan President Hugo Chavez issuing a chilling warning that crude prices could double to US$200 from their already-record level if the United States attacked Iran or Venezuela. He urged assembled leaders from the OPEC, meeting for only the third time in the cartel's 47-year history, to club together for geopolitical reasons. But the cartel is split between an 'anti-US' block including Venezuela, Iran, and soon to return ex-member Ecuador, and a 'neutral' group comprising most Gulf States. France24 - November 17, 2007.

    The article "Biofuels: What a Biopact between North and South could achieve" published in the scientific journal Energy Policy (Volume 35, Issue 7, 1 July 2007, Pages 3550-3570) ranks number 1 in the 'Top 25 hottest articles'. The article was written by professor John A. Mathews, Macquarie University (Sydney, Autralia), and presents a case for a win-win bioenergy relationship between the industrialised and the developing world. Mathews holds the Chair of Strategic Management at the university, and is a leading expert in the analysis of the evolution and emergence of disruptive technologies and their global strategic management. ScienceDirect - November 16, 2007.

Creative Commons License


Sunday, January 06, 2008

Ten priorities for 2008


The Superbus: high-speed, all electric and powered by carbon-negative bio-electricity... the future of mass mobility?
With continuing high energy prices, bioenergy and biofuels are set to see another year of large investments. Most of these will go into first-generation projects. However, there are many energy, mobility, biotechnology and agricultural concepts that open a brighter, greener future than what we have seen so far. We hope some of these ideas come to fruition this year. Biopact hopes the following list of concepts receive more attention in 2008.

1. Reducing deforestation in the tropics
Tropical forests store carbon and the countries and communities that own these resources should be compensated for this stock, or at least for not burning it down. The concept of 'avoided deforestation' or 'compensated reduction' (schemes proposed under the generic title 'Reducing Emissions from Deforestation in Developing Countries' - REDD) could make economic sense.

However, many problems remain, the biggest being the fact that the compensation will not easily reach the communities that actually live in and near these forests. REDD is a 'top down' scheme that could drive the state, bureaucrats, and corrupt officials to push forest communities off their lands. More fundamentally, suppose the money does reach these communities, the question becomes: what are they going to do with it? It won't be enough to guarantee them a modern lifestyle, and they can't invest it in precisely the things that define modernity: mobility (smooth transport and road infrastructures), urban environments, advanced agriculture, energy infrastructures, and all the social and economic benefits that emerge from modernity. Because all these modernist signs of 'progress' would destroy the very forests that are to be protected under the scheme.

REDD will only make sense if it is accompanied by much larger funds that offer these communities a way to 'leapfrog' from pre-modernity straight into a still to be defined type of hyper-efficient, post-industrial post-modernity, skipping the centuries long phase of modernity. It's highly ambitious and not likely to work, but the idea must be tried out.

2. Agricultural investments in the South
There is a very large potential for efficiency increases in agricultural production in the tropics and the subtropics. Especially in Africa, small interventions and improved access to basic farming inputs, markets and technology, can drive up yields dramatically and make farming more sustainable. Scientists predict the continent will be undergoing its own Green Revolution over the coming years. Making existing farming more efficient and modern, means even more land becomes available for energy crops, besides the already large potential for bioenergy production on the continent.

The interventions needed can be extremely simple: Malawi's super harvests of the past two years were solely based on providing small farmers access to fertilizers. This turned the country from a begging bowl into a regional food exporter. Now it is time to replicate this example across the continent, and to add basics such as access to good seeds, herbicides, pesticides, knowledge, modern farming tools, more efficient marketing instruments. This effort further requires investments in rural infrastructures (improved roads, waterways, ports), and into education, extension, cooperation, science and technology. Market conditions - very high agricultural prices - are right, so we will see an influx of investments in farming in developing countries. In a later stage, biotechnological breakthroughs (robust seeds capable of withstanding drought, pests, etc...) and the knowledge to produce them should be transferred.

The FAO recently called on developing country governments to focus much more on agriculture and pointed to Malawi's example. Likewise, the World Bank announced last year it is shifting its attention back to rural development and agriculture, a sector neglected for way too long. The vast majority of the world's poor are farmers in developing countries. It is only logical for development efforts to focus on them first.

3. Carbon-negative bioenergy
This year should also see a growing interest in concepts that deal with the production of carbon-negative energy. Both main pathways remain equally interesting: (1) the production of 'negative emissions' electricity and/or biohydrogen from biomass, with the CO2 captured and stored in geological formations, and (2) the production of fuels and energy from biomass pyrolysis processes which allows carbon to be stored in soils (terra preta) - such biochar enhanced soils improve crop growth and bring a series of major advantags (better water retention, reduced fertilizer needs, and so on). All renewables, wind, solar, hydro and bioenergy, are merely 'carbon neutral'. But bioenergy from which the carbon is captured and stored is 'carbon negative': it takes CO2 out of the atmosphere.

This year should present more results from actual biochar trials that are being conducted across the world. At the same time large power producers who are trying to convince the public of the feasibility of and need for 'carbon capture and storage' (CCS) from coal fired power plants, could boost their case by proposing to switch to biomass instead of coal. CCS + biomass reduces the negative effects of CO2 leakage - the main objection against CCS - to zero, because the CO2 in question is biogenic. A country like China in particular could be the first to trial CCS on biomass power plants to yield 'negative emissions' energy. This would greatly improve its image and would demonstrate it takes the fight against climate change seriously.

California for its part could become the first in the world to trial running vehicles on carbon-negative biohydrogen. The fuel can be made in a relatively competitive way from biomass, with the CO2 captured and stored underground. Since California has an ambitious hydrogen program, relatively abundant biomass resources, and a car manufacturer like Honda willing to bet its future on the fuel and about to trial its hydrogen cars there first, the conditions for such a futuristic mobility concept are perfect. Californians who drive such a car, fueled by carbon-negative biohydrogen, wouldn't be reducing their CO2 emissions to zero. No, that would be a weak offer. Instead, they would be doing such an unimaginable thing as taking CO2 from the past and from America's gaz guzzlers out of the atmosphere.

4. Electric public transport
If it were up to Biopact, the future of mobility would be electric, public and collective. Electric because the most efficient use of biomass is for the production of electricity and heat. This utilization pathway is far more energy efficient than the conversion of biomass into liquid biofuels burned in internal combustion engines. Public and collective, because public transport is cleaner, smarter and more efficient too. Rapidly developing countries like China and India have a chance to invest in hyper-modern mass transit concepts and would stand to gain both economically and environmentally.

Let's point to a concept recently developed at the Technical University of Delft. The SuperBus. These high speed (150 - 250 km/h), fully electric powered, aerodynamic, "intelligent", road driven busses offer on-demand point-to-point services. Passengers can reserve a spot on the vehicle on the Internet or by text messaging from their personal phone. Superbus will go directly to the passengers' destinations thus eliminating unnecessary stops and mileage. The vehicles operate at normal speeds on existing roadways, and will operate at high speeds on newly constructed Supertracks, which will be geothermically heated roadways specifically designed for Superbus vehicles. Each vehicle will have roughly 30 seats and an individual door for each seat. All of the intelligence and high-technology is concentrated in the vehicle, leaving the infrastructure simple and at low cost. As the life cycle of the vehicle is short, newly developed technologies can be rapidly implemented, assuring an up-to-date Superbus sytem. Delft hopes to have a prototype built for demonstrations at the 2008 Olympic games in Beijing. Power the bus by carbon-negative bio-electricity and you have a dream come true:
:: :: :: :: :: :: :: :: :: :: ::

5. An international framework on sustainable biofuels and a study of the effects of high oil prices on poor countries
There is a very large theoretical potential for the production of explicitly sustainable bioenergy. Some scientists estimate it to be around 1300 Exajoules by 2050 - roughly six times the total amount of oil currently consumed by the entire world, and roughly two and a halft times all the energy used by all countries. But this potential is purely a scientific given; it doesn't deal with the way in which the resource is actually exploited and produced.

Markets don't do science, they do money. In this case, they aim at producing bioenergy in the least costly way, without taking into account 'externalities' such as the cost of environmental and social impacts. Examples of land grabs and of destructive farm practises (e.g. some palm oil plantations in Indonesia) abound. This could change with an international framework containing sustainability criteria for biofuels and bioenergy, and carrying moral weight. Binding national criteria and the instruments needed to monitor their application, should emerge in all countries.

At the same time, many poor countries are looking at biofuels as a way to cut their reliance on excessively expensive oil and fossil fuels. For the least developed oil importing countries, some of who spend more than 15% of their entire GDP on importing the resource, current prices are truly catastrophic. They have such effects as generalised inflation, decreased trading capacity, unemployment, crippling agriculture, increasing food insecurity, as well as draining the treasuries of states resulting in cutbacks in spending on basics such as health care and education. This year, energy think tanks should produce comprehensive reports on the effects of high oil prices on these countries, and compare them with the potential for biofuels to mitigate some of these effects.

6. Polygeneration and coupling renewables
Recently, Germany proved that it can power itself entirely by renewables. Scientists coupled geographically dispersed biomass power plants to intermittent renewables like wind and solar, and generated reliable base and peak loads of electricity around the clock. Their calculations show the country has enough biomass, wind and sun to phase out nuclear and to scrap coal.

In 2008, we hope more countries actually demonstrate the feasibility of such distributed energy systems. The power of actual demonstrations of theoretical concepts should not be underestimated. They put policy makers and politicians before a fact that can no longer be hidden; they can no longer argue that such concepts merely exist on paper. Moreover, such demonstrations debunk the 'base-load fallacy', often used by investors and politicians alike as an argument against wind and solar power. By coupling these intermittent resources to robust baseloads provided by bioenergy systems, energy production can become entirely green and reliable.

On a smaller scale, this year will see continued research efforts in efficient polygeneration concepts. The local coupling of renewables to provide heat, power, and cooling in such a way that losses are kept to a minimum is undoubtedly one of the most interesting developments of the past years. Such polygeneration systems can be woven in a smart way into the complex infrastructural fabric of small towns and cities.

7. Synthetic life and a frank discussion about its merits and risks
In 2007, scientists made great progress towards developing synthetic organisms. The disruptive field of 'synthetic biology', which combines methods for the chemical synthesis of DNA with computational techniques to design organisms for specific purposes, will be speeding up further this year. Craig Venter, one of the leading figures in the field, announced he is close to making the first-ever synthetic life-form. He already patented the steps needed to make it. Venter defends his research by pointing at the fact that such organisms could be used, amongst other things, for the production of highly efficient biofuels and bioproducts.

However, civil society organisations are wary of any developments in synthetic biology, which they describe as 'extreme genetic engineering'. They have concerns about ownership and IP (who owns new organisms made from existing genetic material?), about safety (bio-error and bio-terror), about general transparency and control of the technology field. This debate must be carried forward as new advances are made in the lab. Much like the discussions about GM crops, 'synthusiasts' claim the new technology offers the potential to produce 'endless bioenergy', new farmaceuticals and unprecedented chances to tackle climate change, whereas opponents point to the many risks.

8. Local bioenergy market instruments
From the ultra-high-tech to the simplicity of markets and trade. Many countries in the developing world have a large base of agricultural by-products that are currently not used in any efficient way. Biopact would like to see the development of simple market instruments that allow farmers to trade these resources. Local and regional online biomass trading floors already exist in the EU and the US. They should be developed in poorer regions. With simple means (a cellphone and a virtual trading floor), farmers could tap opportunities to sell excess biomass to energy producers, instead of burning it and releasing emissions.

Our call stems from the fact that we receive numerous emails from farmers in developing countries, asking whether they can sell a few tonnes of coffee husks, palm kernels or coconut shells. Instead of exporting them to the EU, which is being done more and more often, why not encourage these farmers to spot local opportunities first? Local bioenergy trading floors could help them.

9. South-South cooperation on bioenergy
Brazil - Africa: the time is now.

10. Small bioenergy systems for developing country households
Rural electrification and providing modern energy services to rural populations is a major challenge for developing countries. The vast bulk of the energy consumed by the billions of rural citizens in these countries is made up of primitive biomass: the use of fuel wood and dung on open fires. This allows them to cook and heat, but with a serious health burden: pulmonary and respiratory diseases caused by indoor smoke pollution, claiming more than a million lives per year, mainly women and children.

However, scientists across the world are putting time and effort in developing appropriate, small scale bioenergy systems for these communities. From microbial fuel cells that produce electricity from waste water, to small biogas powered stirling gensets and thermoacoustic polygensets that deliver both heat, electricity and cooling, and micro-CCHP plants, to small pelletising systems that allow farmers to turn their bulky biomass residues into high quality fuels that can relpace fuel wood, and to clean-burning ethanol gelfuels. Elegant household biogas systems could be greatly improved upon as could biofuel cooking stoves. The positive impacts of these small technologies on the livelihoods and environment of billions of people, are simply so great that these research efforts should always be on the agenda. 2008 should be no exception.

Article continues