<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home / Archive
Nature Blog Network


    Biopact is moving to a new server this weekend, so at times the site may be difficult to access or temporarily offline. We should be up and running again on Monday. Biopact - October 27, 2007.

    U.S. oil prices and Brent crude rocketed to all-time highs again on a record-low dollar, tensions in the Middle East and worries over energy supply shortages ahead of the northern hemisphere's winter. Now even wealthy countries like South Korea are warning that the record prices will damage economic growth. In the developing world, the situation is outright catastrophic. Korea Times - October 26, 2007.

    Ethablog's Henrique Oliveira, a young Brazilian biofuels business expert, is back online. From April to September 2007, he traveled around Brazil comparing the Brazilian and American biofuels markets. In August he was joined by Tom MacDonald, senior alcohol fuels specialist with the California Energy Commission. Henrique reports about his trip with a series of photo essays. EthaBlog - October 24, 2007.

    Italy's Enel is to invest around €400 mln in carbon capture and storage and is looking now for a suitable site to store CO2 underground. Enel's vision of coal's future is one in which coal is used to produce power, to produce ash and gypsum as a by-product for cement, hydrogen as a by-product of coal gasification and CO2 which is stored underground. Carbon capture and storage techniques can be applied to biomass and biofuels, resulting in carbon-negative energy. Reuters - October 22, 2007.

    Gate Petroleum Co. is planning to build a 55 million-gallon liquid biofuels terminal in Jacksonville, Florida. The terminal is expected to cost $90 million and will be the first in the state designed primarily for biofuels. It will receive and ship ethanol and biodiesel via rail, ship and truck and provide storage for Gate and for third parties. The biofuels terminal is set to open in 2010. Florida Times-Union - October 19, 2007.

    China Holdings Inc., through its controlled subsidiary China Power Inc., signed a development contract with the HeBei Province local government for the rights to develop and construct 50 MW of biomass renewable energy projects utilizing straw. The projects have a total expected annual power generating capacity of 400 million kWh and expected annual revenues of approximately US$33.3 million. Total investment in the projects is approximately US$77.2 million, 35 percent in cash and 65 percent from China-based bank loans with preferred interest rates with government policy protection for the biomass renewable energy projects. Full production is expected in about two years. China Holdings - October 18, 2007.

    Canadian Bionenergy Corporation, supplier of biodiesel in Canada, has announced an agreement with Renewable Energy Group, Inc. to partner in the construction of a biodiesel production facility near Edmonton, Alberta. The company broke ground yesterday on the construction of the facility with an expected capacity of 225 million litres (60 million gallons) per year of biodiesel. Together, the companies also intend to forge a strategic marketing alliance to better serve the North American marketplace by supplying biodiesel blends and industrial methyl esters. Canadian Bioenergy - October 17, 2007.

    Leading experts in organic solar cells say the field is being damaged by questionable reports about ever bigger efficiency claims, leading the community into an endless and dangerous tendency to outbid the last report. In reality these solar cells still show low efficiencies that will need to improve significantly before they become a success. To counter the hype, scientists call on the community to press for independent verification of claimed efficiencies. Biopact sees a similar trend in the field of biofuels from algae, in which press releases containing unrealistic yield projections and 'breakthroughs' are released almost monthly. Eurekalert - October 16, 2007.

    The Colorado Wood Utilization and Marketing Program at Colorado State University received a $65,000 grant from the U.S. Forest Service to expand the use of woody biomass throughout Colorado. The purpose of the U.S. Department of Agriculture grant program is to provide financial assistance to state foresters to accelerate the adoption of woody biomass as an alternative energy source. Colorado State University - October 12, 2007.

    Indian company Naturol Bioenergy Limited announced that it will soon start production from its biodiesel facility at Kakinada, in the state of Andhra Pradesh. The facility has an annual production capacity of 100,000 tons of biodiesel and 10,000 tons of pharmaceutical grade glycerin. The primary feedstock is crude palm oil, but the facility was designed to accomodate a variety of vegetable oil feedstocks. Biofuel Review - October 11, 2007.

    Brazil's state energy company Petrobras says it will ship 9 million liters of ethanol to European clients next month in its first shipment via the northeastern port of Suape. Petrobras buys the biofuel from a pool of sugar cane processing plants in the state of Pernambuco, where the port is also located. Reuters - October 11, 2007.

    Dynamotive Energy Systems Corporation, a leader in biomass-to-biofuel technology, announces that it has completed a $10.5 million equity financing with Quercus Trust, an environmentally oriented fund, and several other private investors. Ardour Capital Inc. of New York served as financial advisor in the transaction. Business Wire - October 10, 2007.

    Cuban livestock farmers are buying distillers dried grains (DDG), the main byproduct of corn based ethanol, from biofuel producers in the U.S. During a trade mission of Iowan officials to Cuba, trade officials there said the communist state will double its purchases of the dried grains this year. DesMoines Register - October 9, 2007.

    Brasil Ecodiesel, the leading Brazilian biodiesel producer company, recorded an increase of 57.7% in sales in the third quarter of the current year, in comparison with the previous three months. Sales volume stood at 53,000 cubic metres from August until September, against 34,000 cubic metres of the biofuel between April and June. The company is also concluding negotiations to export between 1,000 to 2,000 tonnes of glycerine per month to the Asian market. ANBA - October 4, 2007.

    PolyOne Corporation, the US supplier of specialised polymer materials, has opened a new colour concentrates manufacturing plant in Kutno, Poland. Located in central Poland, the new plant will produce colour products in the first instance, although the company says the facility can be expanded to handle other products. In March, the Ohio-based firm launched a range of of liquid colourants for use in bioplastics in biodegradable applications. The concentrates are European food contact compliant and can be used in polylactic acid (PLA) or starch-based blends. Plastics & Rubber Weekly - October 2, 2007.

    A turbo-charged, spray-guided direct-injection engine running on pure ethanol (E100) can achieve very high specific output, and shows “significant potential for aggressive engine downsizing for a dedicated or dual-fuel solution”, according to engineers at Orbital Corporation. GreenCarCongress - October 2, 2007.

    UK-based NiTech Solutions receives £800,000 in private funding to commercialize a cost-saving industrial mixing system, dubbed the Continuous Oscillatory Baffled Reactor (COBR), which can lower costs by 50 per cent and reduce process time by as much as 90 per cent during the manufacture of a range of commodities including chemicals, drugs and biofuels. Scotsman - October 2, 2007.

    A group of Spanish investors is building a new bioethanol plant in the western region of Extremadura that should be producing fuel from maize in 2009. Alcoholes Biocarburantes de Extremadura (Albiex) has already started work on the site near Badajoz and expects to spend €42/$59 million on the plant in the next two years. It will produce 110 million litres a year of bioethanol and 87 million kg of grain byproduct that can be used for animal feed. Europapress - September 28, 2007.

    Portuguese fuel company Prio SA and UK based FCL Biofuels have joined forces to launch the Portuguese consumer biodiesel brand, PrioBio, in the UK. PrioBio is scheduled to be available in the UK from 1st November. By the end of this year (2007), says FCL Biofuel, the partnership’s two biodiesel refineries will have a total capacity of 200,000 tonnes which will is set to grow to 400,000 tonnes by the end of 2010. Biofuel Review - September 27, 2007.

    According to Tarja Halonen, the Finnish president, one third of the value of all of Finland's exports consists of environmentally friendly technologies. Finland has invested in climate and energy technologies, particularly in combined heat and power production from biomass, bioenergy and wind power, the president said at the UN secretary-general's high-level event on climate change. Newroom Finland - September 25, 2007.

    Spanish engineering and energy company Abengoa says it had suspended bioethanol production at the biggest of its three Spanish plants because it was unprofitable. It cited high grain prices and uncertainty about the national market for ethanol. Earlier this year, the plant, located in Salamanca, ceased production for similar reasons. To Biopact this is yet another indication that biofuel production in the EU/US does not make sense and must be relocated to the Global South, where the biofuel can be produced competitively and sustainably, without relying on food crops. Reuters - September 24, 2007.

    The Midlands Consortium, comprised of the universities of Birmingham, Loughborough and Nottingham, is chosen to host Britain's new Energy Technologies Institute, a £1 billion national organisation which will aim to develop cleaner energies. University of Nottingham - September 21, 2007.

    The EGGER group, one of the leading European manufacturers of chipboard, MDF and OSB boards has begun work on installing a 50MW biomass boiler for its production site in Rion. The new furnace will recycle 60,000 tonnes of offcuts to be used in the new combined heat and power (CHP) station as an ecological fuel. The facility will reduce consumption of natural gas by 75%. IHB Network - September 21, 2007.


Creative Commons License


Sunday, October 28, 2007

European Science Foundation launches microbial biofilms project - applications in bioenergy


Microbes such as bacteria tend to live in complex colonies called biofilms, where they can resist antibiotics and cause more problems for the immune system. Biofilms comprising millions of bacteria are at the root of many serious chronic infectious diseases such as cystic fibrosis and periodontal disease, as well as industrial contamination, biofouling and biocorrosion.

Yet biofilms also have equal potential for good behaviour, in particular as agents of self-purification in streams and rivers, waste and pollution treatment, or generation of carbon-neutral electricity. These critical properties are derived from the existence of the protective slimy matrix within which members of the community live, preventing attack from both the immune system and antibiotics, but at the same time shielding them from toxic contaminants while breaking down waste or effluent.

The study of biofilms has emerged over the last three decades in various disciplines such as biotechnology, bioengineering or infectious disease research, leading to rapid progress, but also fragmentation and duplication of effort. The European Science Foundation (ESF) has stepped in to unite Europe's effort and bring together scientists with the required skills in relevant fields such as genetics, molecular biology, microscopy, medical microbiology, environmental science and ecology.

The programme began with an Exploratory Workshop in September 2007, titled 'Valuing Biofilm Services: the Beauty and the Beast', leading to a proposal for a new body to coordinate activities, the European Biofilm Net (EBN). The ESF workshop highlighted the huge potential and importance of biofilms, and also drew attention to exciting work unravelling the complex genetic and cellular interactions within these small yet teeming communities.

The ESF workshop highlighted greater understanding of the complex interactions within biofilms, which often comprise not just one species of bacteria, but a whole host of different micro-organisms, including archaea, protozoa, fungi, and even tiny metazoa actually comprising multiple cells. Many biofilms are in fact complete micro-ecosystems, within which there is competition as well as cooperation, and unraveling the interactions will reveal valuable insights into how these evolved.

The Workshop's convenor Tom J. Battin, from the University of Vienna, pointed out that there was great excitement about an emerging application that could have potential for green energy production - the use of biofilms to power microbial fuel cells (MFCs, introduction) whose fuel could be wastewater or any type of waste biomass, as outlined at the ESF workshop by Cristian Picioreanu, Delft University of Technology. This exploits the ability of bacteria to transfer electrons to metals, which can be the cathode of a fuel cell, via the minute tentacles called phili extending from their surface.

Microbiologists recently found that the power output of microbial fuel cells can be boosted more than 10-fold by letting the bacteria congregate into such slimy biofilms (schematic shows set-up of a biofilm based MFC, click to enlarge):
:: :: :: :: :: :: :: :: ::

A typical fuel cell converts fuels to electricity without the need for combustion and microbial fuel cells work the same way. They usually comprise two compartments, or cells, which are separated by an electrically insulating membrane. In one compartment, microorganisms pull electrons and protons from some sort of fuel—such as waste organic matter. These protons and electrons are attracted to molecules in the second compartment—usually oxygen—and will move towards those molecules. The protons do this by passing through the membrane. But the electrons can’t go through the membrane and so must travel via an alternate route—a wire, or electrode that connects the two compartments. It is this flow of electrons through the electrode that supplies power.

Microbial fuels cells harness the electron shuttling that occurs in the energy-making pathway of certain bacteria. In the energy-making pathway of most animals, electrons and protons are also shuttled about, and usually electrons are passed to oxygen brought in through the lungs. Early microbial fuel cells intercepted the bacteria’s electron shuttling with compounds called 'mediators,' which would penetrate the bacteria, snatch electrons and then transfer them to the metal electrode. But the compounds typically used as mediators are often expensive and toxic. A more recent and efficient approach has been to use microbes that can pass electrons directly to a metal electrode.

These “metal-reducing” bacteria are ideal for fuel cells, especially species of Geobacter and Rhodoferax, microbes that evolved means to transfer electrons to metals in the surrounding environment. The microbes use thin wire-like growths, several cell lengths long, that extend from their cell membrane out into the environment. Many bacteria have these extended structures—called pili—they usually use the hair-like extensions to attach to other cells or surfaces. But Geobacter uses pili to transfer electrons onto iron in the surrounding soil. These so-called 'microbial nanowires' also seem to be critical for Geobacter to form a biofilm.

While investigating the microbes’ electron transfer mechanism, microbiologists recently created mutant Geobacter that don’t have the gene for making the phili, yet the microbes still produced electricity when placed in a fuel cell. The researchers suspected that a membrane protein that was part of the microbe’s energy-making pathway was also able to transfer electrons directly to the metal electrode.

The microbes were lined up in a single, thin layer along the electrode and it seemed that either the nanowires or the membrane protein had to be in direct contact with the electrode for electron transfer to occur.

But then the researchers tweaked the fuel cell so the second compartment could take as many electrons as the microbes could provide. To their surprise, the power output increased dramatically and Geobacter began to grow on the electrode in a thick, sticky mass known as a biofilm. However, the mutant Geobacter that couldn’t make phili couldn’t congregate into a biofilm. The mutants produced electricity at a much slower rate and so it seemed that Geobacter’s phili are essential for making a biofilm.

Many bacteria form biofilms — the gluey matrix of sugars serves to anchor free - floating microbes to various surfaces, such as teeth, a refrigerator drawer or rocks in a stream. Biofilms are usually the bane of those who encounter them — they cause tooth decay, ruin the hulls of ships and can cause serious health problems when they glom onto medical implant devices such as catheters. But in this instance, the biofilm is a good thing. It seems to act as one big, slimy, conductive mat, allowing electrons to be transferred by bacteria that aren’t in direct contact with the electrode.

Further experiments have confirmed that microbes in the center of the biofilm — too far from the electrode to reach it themselves — transfer electrons at the same rate as microbes that are closer to the edge. It is a finding the scientists would have predicted.

It makes sense that Geobacter is in direct contact with the electrode to pass electrons. But now there are these big slime layers — big red glops of Geobacter growing on the electrode — and they are all passing electrons. How the electrons are transferred through the gooey matrix isn’t clear, but this is what is being investigated currently. It does seem clear that improved methods for generating electricity via microbial fuel cells may be only a few slimy steps away.


The ESF Biofilm workshop delved into biofilm's role chronic infections, including killers such as cystic fibrosis, and endocarditis in the heart. Batin explains that in cystic fibrosis, excess mucus production in the airways gives sanctuary to bacteria such as Pseudomonas aeruginosa, which actually mop up the dead carcasses of white blood cells sent by the immune system, enabling them to construct their protective biofilm coat. In this case the immune system is the architect of its own problems, helping create the shield used to repel its own agents, as well as resisting antibiotics. Indeed resistance against antibiotics is itself one of the biggest problems of all associated with biofilms, Battin noted.

This becomes particularly dramatic for endocarditis patients, as was outlined at the workshop by Annette Moter from the Charite in Berlin, said Battin. Endocarditis is a rare but serious disease in which one of the four heart valves, the heart lining, or heart muscle, are infected by a bacterial biofilm, often comprising streptococci, and become inflamed. As the biofilms are resistant to antibiotics and the immune system�s white blood cells, very often the only remedy is surgery, to replace a damaged valve, which can itself cause problems. The hope is that greater understanding will yield new drugs that reach the infected heart valve and break up the biofilm.

As Battin pointed out, biofilms can pose a big problem in large-scale water treatment plants, and yet for the very same reasons can play a positive role in the very same process, breaking down contaminants in waste and natural waters, for example. Further research will help ensure that the positive role is accentuated, while avoiding the problems.


The ESF Workshop, 'Valuing Biofilm Services: the Beauty and the Beast', was held 19-22 September at the interuniversity research center WasserCluster Lunz, Austria. This is being followed by a proposal for the EBN, with the specific objectives of developing both laboratory and computational techniques, while integrating relevant fields such as system biology or ecology and evolution, to create the interdisciplinary platform for a new era of biofilm research.

Each year, ESF supports approximately 50 Exploratory Workshops across all scientific domains. These small, interactive group sessions are aimed at opening up new directions in research to explore new fields with a potential impact on developments in science.

Image and animation: animation shows simulation of biofilm development over a 7-day period. Courtesy: Cristian Picioreanu, TU Delft.

References:
European Science Foundation Exploratory Workshop: Valuing Biofilm Services: the Beauty and the Beast.

Eurekalert: Microbial biofilms evoke Jekyll & Hyde effects - 26-Oct-2007

Cristian Picioreanu et al., "A computational model for biofilm-based microbial fuel cells", Water Research, 41(13):2921-2940, 29 May 2007

Technical University of Delft: Biofilm modeling research group.

Biopact: Microbial fuel cell development speeds up: from biopower in space to the developing world - September 30, 2007


Article continues