<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home / Archive
Nature Blog Network


    Mongabay, a leading resource for news and perspectives on environmental and conservation issues related to the tropics, has launched Tropical Conservation Science - a new, open access academic e-journal. It will cover a wide variety of scientific and social studies on tropical ecosystems, their biodiversity and the threats posed to them. Tropical Conservation Science - March 8, 2008.

    At the 148th Meeting of the OPEC Conference, the oil exporting cartel decided to leave its production level unchanged, sending crude prices spiralling to new records (above $104). OPEC "observed that the market is well-supplied, with current commercial oil stocks standing above their five-year average. The Conference further noted, with concern, that the current price environment does not reflect market fundamentals, as crude oil prices are being strongly influenced by the weakness in the US dollar, rising inflation and significant flow of funds into the commodities market." OPEC - March 5, 2008.

    Kyushu University (Japan) is establishing what it says will be the world’s first graduate program in hydrogen energy technologies. The new master’s program for hydrogen engineering is to be offered at the university’s new Ito campus in Fukuoka Prefecture. Lectures will cover such topics as hydrogen energy and developing the fuel cells needed to convert hydrogen into heat or electricity. Of all the renewable pathways to produce hydrogen, bio-hydrogen based on the gasification of biomass is by far both the most efficient, cost-effective and cleanest. Fuel Cell Works - March 3, 2008.


    An entrepreneur in Ivory Coast has developed a project to establish a network of Miscanthus giganteus farms aimed at producing biomass for use in power generation. In a first phase, the goal is to grow the crop on 200 hectares, after which expansion will start. The project is in an advanced stage, but the entrepreneur still seeks partners and investors. The plantation is to be located in an agro-ecological zone qualified as highly suitable for the grass species. Contact us - March 3, 2008.

    A 7.1MW biomass power plant to be built on the Haiwaiian island of Kaua‘i has received approval from the local Planning Commission. The plant, owned and operated by Green Energy Hawaii, will use albizia trees, a hardy species that grows in poor soil on rainfall alone. The renewable power plant will meet 10 percent of the island's energy needs. Kauai World - February 27, 2008.


Creative Commons License


Wednesday, July 02, 2008

Four million truckers paralyse Indian economy - food crisis looms


More than four million truckers in India have stopped working and are protesting over high fuel prices. Their strike is paralysing the country's economy and is threatening to fuel the food crisis further. The truckers want the government to lower taxes and undo the cuts in fuel subsidies it recently introduced. The truckers vow to shut down the country if no deal is reached.
Truckers are simply no longer able to work. Diesel has become so expensive that we can not survive. We are being forced to lay down our work. [...] We had talks with the government, but it was just an eyewash. We are hoping that a solution would be found soon. - Gurinder Pal Singh, AIMTC
The road transport sector is India's most important mechanism to supply the subcontinent's 1.4 billion inhabitants and its economy. Trucks not only supply raw materials and finished goods to end users, they also transport food and agricultural products from the country-side to the growing mega-cities.

Food crisis

Rising fuel costs are already the largest factor in the increase in food prices, heavily affecting the poor. But if the transportation sector shuts down altogether, a fullblown food crisis would emerge.

The Confederation of All-India Traders said it expected prices of food and essential items to rise sharply if the strike continued for more than two days:
If the strike continues, prices of food grains, pulses, consumer durables, and raw materials for industry will go up by 10-15 percent. - Praveen Khandelwal, Confederation of All-India Traders.
The Indian economy is booming, but the country imports 70 percent of its liquid fuels from abroad. This heavy oil-dependency has wreaked havoc amongst fuel intensive economic sectors such as agriculture, transport and the airline industry.

High oil prices recently forced the Indian government to cut back fuel subsidies, leading to higher prices for consumers. The move angered the masses who took to the streets by the millions. The fuel protests have now spilled over to other sectors.

According to the All India Motor Transport Congress (AIMTC), the recent subsidy cuts signal the second price jump in a short time. Earlier this year, diesel prices increased by more than 40 percent. In order to save the transportation sector, the AIMTC urges the government not only to re-subsidize and regulate the price of transportation fuels, but to lower road toll taxes as well.

Over the past few weeks the world has seen fuel riots, strikes and protests in more than 90 countries.
:: :: :: :: :: :: :: :: ::


Article continues

Research into circadian rhythms in plants could lead to better crops

Researchers of the Department of Biological Sciences at Dartmouth College are investigating the molecular basis and regulation of circadian rhythms in plants, and are obtaining information which could lead to the development of crops adapted to many different growing conditions.

As anyone who has suffered from jetlag knows, we have internal clocks that tell us when to sleep and wake, and we can be miserable when these are disrupted. The daily cycles of many organisms are well known, but what has not been clear is whether these cycles are just responses to external cues of light, dark, heat, and cold, or if there are internal clocks that are set and reset by environmental signals. In animals, circadian rhythms are known to be important for maintaining a multitude of physiological processes. They may be even more critical for plants, which grow in many different light and temperature environments that not only vary with latitude but also with subtle differences within just a few feet.

Plants respond to changes in light and temperature, opening flowers at dawn and closing them at night or blooming in the right season. However, they also have endogenous circadian ("around the day") rhythms with roughly 24 hour periods that are regulated by numerous genes that interact in complex pathways and cycles like exquisite 18th century clocks.

These clock genes have been intensely investigated over the last 20 years, but we still do not fully understand the molecular mechanisms that make them run. Knowledge of these oscillations and the genes that regulate them could help us adjust the growth, development, and yield of crops under climatically variable conditions.

Dr. C. Robertson McClung and his colleagues are investigating the genetic basis and molecular mechanisms of circadian cycling and regulation in plants. Dr. McClung, of the Department of Biological Sciences, Dartmouth College, presented this work at the President's symposium of the annual meeting of the American Society of Plant Biologists in Mérida, Mexico. This year's meeting is titled The Pan American Congress on Plants and BioEnergy.

Clock genes have been identified in mammals, Drosophila, fungi, and cyanobacteria and their oscillatory mechanisms analyzed with studies of mutants. Many of these genes are conserved across taxa, but plants appear to have a novel mechanism.

McClung and other scientists have shown that, in the model organism Arabidopsis, members of the PRR (pseudo-response regulator) gene family are integral parts of several oscillatory loops that may affect carbon fixation, stem elongation, biomass, flowering time, and survival. In particular, McClung and his co-workers showed that PRR7 and PRR9 are critical for responses to temperature, although they appear to function in other circadian cycles as well.

It is not accidental that the members of the PRR family are transcribed from DNA to RNA at different times of day, suggesting that the protein products function in processes that are coordinated with diurnal events. Thus, one of the mechanisms of clock gene regulation is the control of transcription and accumulation of RNA transcripts. Other forms of regulation are post-translational - after the clock gene proteins have been made. These proteins are translocated to different compartments to perform their functions, have phosphate groups attached to them to change their activity, or are marked for degradation - all precisely timed for optimal function:
:: :: :: :: :: :: :: ::

With mutant analyses, McClung and his coworkers have shown that the PRR genes do not act in isolation, but rather are integrated and overlapping in function. Double and triple mutants have effects that are not simply additive but are much larger than those of single mutants. This suggests that it is adaptive for plants to have a group of genes, each with a small effect, but when functionally linked with other genes, part of a precise mechanism capable of subtle and specific responses, like the interlocking wheels of a clock.

McClung and his colleagues are studying how such mechanisms could have evolved. Through sequence analysis of PRR7 in over 100 different cultivars of Arabidopsis, they have shown that the nucleotides in the gene's DNA are replaced at a significant rate, resulting in greater genetic variation at this locus (chromosomal region). If plants have to respond to different conditions of light and temperature at different locations, then it makes sense for different varieties of the same plant to have slightly different forms (alleles) of the gene. Similar mutations in other clock genes will then result in the evolution of many clocks and circadian rhythms keyed to local conditions - the plant equivalent of time zones.

The scientists are now also examining the clock genes in other plants and have found quantitative trait loci (QTLs) for these genes in the model crop species Brassica rapa (rapeseed). QTLs are chromosomal regions containing closely related genes that all influence a trait, resulting in, for example, a range of heights or eye color. Such loci are consistent with multiple interlocking genes in the clock mechanisms of circadian rhythms. The knowledge of circadian rhythms in animals is being used in medicine to facilitate drug delivery and cancer treatments. Understanding the clock genes through which plants interact with their environments can aid in engineering crops and cultivars for higher productivity, as well as adaptation of foreign plants to new environmental conditions.

References:

Eurekalert: Plants in the Fourth Dimension - July 1, 2008.


Article continues