<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    Austrian bioenergy group Cycleenergy acquired controlling interest in Greenpower Projektentwicklungs GmbH, expanding its biomass operational portfolio by 16 MW to a total of 22 MW. In the transaction Cycleenergy took over 51% of the company and thereby formed a joint venture with Porr Infrastruktur GmbH, a subsidiary of Austrian construction company Porr AG. Greenpower operates two wood chip CHP facilities in Upper and Lower Austria, each with an electric capacity of 2 MW. The plants have been in operation since the middle of last year and consume more than 30,000 tonnes of wood chips and are expected to generate over €5 million in additional revenue. Cycleenergy - February 6, 2007.

    The 2008 edition of Bioenergy World Europe will take place in Verona, Italy, from 7 to 10 February. Gathering a broad range of international exhibitors covering gaseous, liquid and solid bioenergy, the event aims to offer participants the possibility of developing their business through meetings with professionals, thematic study tours and an international forum focusing on market and regulatory issues, as well as industry expertise. Bioenergy World Europe - February 5, 2007.

    The World GTL Summit will take place between 12 – 14th May 2008 in London. Key topics to be discussed include: the true value of Gas-to-Liquids (GTL) projects, well-to-wheels analyses of the GTL value chain; construction, logistics and procurement challenges; the future for small-scale Fischer-Tropsch (FT) projects; Technology, economics, politics and logistics of Coal-to-Liquids (CTL); latest Biomass-to-Liquids (BTL) commercialisation initiatives. CWC Exhibitions - February 4, 2007.

    The 4th Annual Brussels Climate Change Conference is announced for 26 - 27 February 2008. This joint CEPS/Epsilon conference will explore the key issues for a post-Kyoto agreement on climate change. The conference focuses on EU and global issues relating to global warming, and in particular looks at the following issues: - Post-2012 after Bali and before the Hokkaido G8 summit; Progress of EU integrated energy and climate package, burden-sharing renewables and technology; EU Emissions Trading Review with a focus on investment; Transport Climatepolicy.eu - January 28, 2007.

    Japan's Marubeni Corp. plans to begin importing a bioethanol compound from Brazil for use in biogasoline sold by petroleum wholesalers in Japan. The trading firm will import ETBE, which is synthesized from petroleum products and ethanol derived from sugar cane. The compound will be purchased from Brazilian petrochemical company Companhia Petroquimica do Sul and in February, Marubeni will supply 6,500 kilolitres of the ETBE, worth around US$7 million, to a biogasoline group made up of petroleum wholesalers. Wholesalers have been introducing biofuels since last April by mixing 7 per cent ETBE into gasoline. Plans call for 840 million liters of ETBE to be procured annually from domestic and foreign suppliers by 2010. Trading Markets - January 24, 2007.

    Toyota Tsusho Corp., Ohta Oil Mill Co. and Toyota Chemical Engineering Co., say it and two other firms have jointly developed a technology to produce biodiesel fuel at lower cost. Biodiesel is made by blending methanol into plant-derived oil. The new technology requires smaller amounts of methanol and alkali catalysts than conventional technologies. In addition, the new technology makes water removal facilities unnecessary. JCN Network - January 22, 2007.

    Finland's Metso Paper and SWISS COMBI - W. Kunz dryTec A.G. have entered a licence agreement for the SWISS COMBI belt dryer KUVO, which allows biomass to be dried in a low temperature environment and at high capacity, both for pulp & paper and bioenergy applications. Kauppalehti - January 22, 2007.

    Record warm summers cause extreme ice melt in Greenland: an international team of scientists, led by Dr Edward Hanna at the University of Sheffield, has found that recent warm summers have caused the most extreme Greenland ice melting in 50 years. The new research provides further evidence of a key impact of global warming and helps scientists place recent satellite observations of Greenland´s shrinking ice mass in a longer-term climatic context. Findings are published in the 15 January 2008 issue of Journal of Climate. University of Sheffield - January 15, 2007.

    Japan's Tsukishima Kikai Co. and Marubeni Corp. have together clinched an order from Oenon Holdings Inc. for a plant that will make bioethanol from rice. The Oenon group will invest around 4.4 billion yen (US$40.17 million) in the project, half of which will be covered by a subsidy from the Ministry of Agriculture, Forestry and Fisheries. The plant will initially produce bioethanol from imported rice, with plans to use Hokkaido-grown rice in the future. It will produce 5 million liters per year starting in 2009, increasing output to 15m liters in 2011. The facility will be able to produce as much as 50,000 liters of bioethanol from 125 tons of rice each day. Trading Markets - January 11, 2007.

    PetroSun, Inc. announced today that its subsidiary, PetroSun BioFuels Refining, has entered into a JV to construct and operate a biodiesel refinery near Coolidge, Arizona. The feedstock for the refinery will be algal oil produced by PetroSun BioFuels at algae farms to be located in Arizona. The refinery will have a capacity of thirty million gallons and will produce 100% renewable biodiesel. PetroSun BioFuels will process the residual algae biomass into ethanol. MarketWire - January 10, 2007.

    BlueFire Ethanol Fuels Inc, which develops and operates carbohydrate-based transportation fuel production facilities, has secured capital liquidity for corporate overhead and continued project development in the value of US$15 million with Quercus, an environmentally focused trust. BlueFire Ethanol Fuels - January 09, 2007.

    Some $170 billion in new technology development projects, infrastructure equipment and construction, and biofuel refineries will result from the ethanol production standards contained the new U.S. Energy Bill, says BIO, the global Biotechnology Industry Organization. According to Brent Erickson, BIO's executive vice president "Such a new energy infrastructure has not occurred in more than 100 years. We are at the point where we were in the 1850s when kerosene was first distilled and began to replace whale oil. This technology will be coming so fast that what we say today won't be true in two years." Chemical & Engineering News - January 07, 2007.

    Scottish and Southern Energy plc, the UK's second largest power company, has completed the acquisition of Slough Heat and Power Ltd from SEGRO plc for a total cash consideration of £49.25m. The 101MW CHP plant is the UK’s largest dedicated biomass energy facility fueled by wood chips, biomass and waste paper. Part of the plant is contracted under the Non Fossil Fuel Obligation and part of it produces over 200GWH of output qualifying for Renewable Obligation Certificates (ROCs), which is equivalent to around 90MW of wind generation. Scottish & Southern Energy - January 2, 2007.

    PetroChina Co Ltd, the country's largest oil and gas producer, plans to invest 800 million yuan to build an ethanol plant in Nanchong, in the southwestern province of Sichuan, its parent China National Petroleum Corp said. The ethanol plant has a designed annual capacity of 100,000 tons. ABCMoneyNews - December 21, 2007.

    Mexico passed legislation to promote biofuels last week, offering unspecified support to farmers that grow crops for the production of any renewable fuel. Agriculture Minister Alberto Cardenas said Mexico could expand biodiesel faster than ethanol. More soon. Reuters - December 20, 2007.

    Oxford Catalysts has placed an order worth approximately €700,000 (US$1 million) with the German company Amtec for the purchase of two Spider16 high throughput screening reactors. The first will be used to speed up the development of catalysts for hydrodesulphurisation (HDS). The second will be used to further the development of catalysts for use in gas to liquid (GTL) and Fischer-Tropsch processes which can be applied to next generation biofuels. AlphaGalileo - December 18, 2007.

    According to the Instituto Brasileiro de Geografia e Estatística (IBGE), Brazil's production of sugarcane will increase from 514,1 million tonnes this season, to a record 561,8 million tonnes in the 2008/09 cyclus - an increase of 9.3%. New numbers are also out for the 2007 harvest in Brazil's main sugarcane growing region, the Central-South: a record 425 million tonnes compared to 372,7 million tonnes in 2006, or a 14% increase. The estimate was provided by Unica – the União da Indústria de Cana-de-Açúcar. Jornal Cana - December 16, 2007.

    The University of East Anglia and the UK Met Office's Hadley Centre have today released preliminary global temperature figures for 2007, which show the top 11 warmest years all occurring in the last 13 years. The provisional global figure for 2007 using data from January to November, currently places the year as the seventh warmest on records dating back to 1850. The announcement comes as the Secretary-General of the World Meteorological Organization (WMO), Michel Jarraud, speaks at the Conference of the Parties (COP) in Bali. Eurekalert - December 13, 2007.

    The Royal Society of Chemistry has announced it will launch a new journal in summer 2008, Energy & Environmental Science, which will distinctly address both energy and environmental issues. In recognition of the importance of research in this subject, and the need for knowledge transfer between scientists throughout the world, from launch the RSC will make issues of Energy & Environmental Science available free of charge to readers via its website, for the first 18 months of publication. This journal will highlight the important role that the chemical sciences have in solving the energy problems we are facing today. It will link all aspects of energy and the environment by publishing research relating to energy conversion and storage, alternative fuel technologies, and environmental science. AlphaGalileo - December 10, 2007.

    Dutch researcher Bas Bougie has developed a laser system to investigate soot development in diesel engines. Small soot particles are not retained by a soot filter but are, however, more harmful than larger soot particles. Therefore, soot development needs to be tackled at the source. Laser Induced Incandescence is a technique that reveals exactly where soot is generated and can be used by project partners to develop cleaner diesel engines. Terry Meyer, an Iowa State University assistant professor of mechanical engineering, is using similar laser technology to develop advanced sensors capable of screening the combustion behavior and soot characteristics specifically of biofuels. Eurekalert - December 7, 2007.

    Lithuania's first dedicated biofuel terminal has started operating in Klaipeda port. At the end of November 2007, the stevedoring company Vakaru krova (VK) started activities to manage transshipments. The infrastructure of the biodiesel complex allows for storage of up to 4000 cubic meters of products. During the first year, the terminal plans to transship about 70.000 tonnes of methyl ether, after that the capacities of the terminal would be increased. Investments to the project totaled €2.3 million. Agrimarket - December 5, 2007.

    New Holland supports the use of B100 biodiesel in all equipment with New Holland-manufactured diesel engines, including electronic injection engines with common rail technology. Overall, nearly 80 percent of the tractor and equipment manufacturer's New Holland-branded products with diesel engines are now available to operate on B100 biodiesel. Tractor and equipment maker John Deere meanwhile clarified its position for customers that want to use biodiesel blends up to B20. Grainnet - December 5, 2007.

    According to Wetlands International, an NGO, the Kyoto Protocol as it currently stands does not take into account possible emissions from palm oil grown on a particular type of land found in Indonesia and Malaysia, namely peatlands. Mongabay - December 5, 2007.

    Malaysia's oil & gas giant Petronas considers entering the biofuels sector. Zamri Jusoh, senior manager of Petronas' petroleum development management unit told reporters "of course our focus is on oil and gas, but I think as we move into the future we cannot ignore the importance of biofuels." AFP - December 5, 2007.


Creative Commons License


Friday, February 08, 2008

Two studies state the obvious: clearing high carbon land for first-generation biofuels can lead to higher emissions


Two interesting studies published in Science state the obvious again: clearing undisturbed forests or grasslands without using their biomass, to plant low yielding first generation biofuel crops like corn or soybeans on them, increases carbon emissions. A tropical forest stores a lot of carbon, and burning this to make way for oil palms yields large emissions. It can take decades before the biofuel actually makes up for this 'carbon debt'. So far, nothing new.

The problem with the studies is that they stick to old and current practise, and do not look at the concept of utilizing the biomass from the land that is to be cleared, in a productive way as a bioenergy feedstock. This immediately clears much of a biofuel's carbon debt. But then, this practise is not yet used on a large scale, which is why the authors do not mention it (or are not aware of it). Moreover, the studies do not take into account future concepts like carbon-negative bioenergy, which is a system that takes historic CO2 emissions out of the atmosphere by coupling biofuel production to carbon capture and storage (BECS systems) or to biochar (the sequestration of carbon into soils via char).

In short, the studies are important, because they indicate that current agricultural practises used for first-generation biofuels are not sustainable. Instead, the analyses make a strong case for bio-energy with carbon storage (biochar and CCS), for the utilization of pristine biomass as a biofuel feedstock, and for a rapid transition to crops that store more carbon than the biomass that used to grow on the cleared land. They also indicate a clear need for land-use change analyses and research into 'indirect emissions' that must be taken into account when calculating the emissions balance of biofuels.

Analyzing the lifecycle emissions from biofuels, the first study by private conservation group The Nature Conservancy, found that carbon released by converting high-carbon lands such as rainforests, peatlands, savannas, or grasslands often far outweighs the carbon savings from biofuels. Conversion of peatland rainforests for oil palm plantations for example, incurs a "carbon debt" of 423 years in Indonesia and Malaysia, while the carbon emission from clearing Amazon rainforest for soybeans takes 319 years of renewable soy biodiesel before the land can begin to lower greenhouse gas levels and mitigate global warming (see graph).

An author and researcher from The Nature Conservancy comments [note the flawed argument about not utilizing the biomass from the cleared land]:
These natural areas store a lot of carbon, so converting them to croplands results in tons of carbon emitted into the atmosphere. We analyzed all the benefits of using biofuels as alternatives to oil, but we found that the benefits fall far short of the carbon losses. It's what we call 'the carbon debt.' If you're trying to mitigate global warming, it simply does not make sense to convert land for biofuels production. All the biofuels we use now cause habitat destruction, either directly or indirectly. Global agriculture is already producing food for six billion people. Producing food-based biofuel, too, will require that still more land be converted to agriculture. - Joe Fargione, The Nature Conservancy
Indirect emissions
While a number of studies have shown that conversion of particular tropical ecosystems, including peat swamps in Southeast Asia and rainforests in South America, for energy crops result in net emissions, the second study shows that when assessed at a global level, U.S. corn ethanol is also a major CO2 source — not a CO2 sink as usually claimed by the farm industry.
Using a worldwide agricultural model to estimate emissions from land use change, we found that corn-based ethanol, instead of producing a 20% savings, nearly doubles greenhouse emissions over 30 years and increases greenhouse gasses for 167 years. - Timothy Searchinger, et. al.
Their assessment is based on the additional land that needs to be converted abroad as a result of increased corn acreage planted for ethanol production in the United States. These are 'indirect' land-use changes occuring from biofuels production elsewhere:
:: :: :: :: :: :: :: :: ::

"To produce biofuels, farmers can directly plow up more forest or grassland, which releases to the atmosphere much of the carbon previously stored in plants and soils through decomposition or fire," write the authors. "The loss of maturing forests and grasslands also forgoes ongoing carbon sequestration as plants grow each year, and this foregone sequestration is the equivalent of additional emissions. Alternatively, farmers can divert existing crops or croplands into biofuels, which causes similar emissions indirectly. The diversion triggers higher crop prices, and farmers around the world respond by clearing more forest and grassland to replace crops for feed and food. Studies have confirmed that higher soybean prices accelerate clearing of Brazilian rainforest."

In particular, the authors — including researchers from Princeton University, Agricultural Conservation Economics, the Woods Hole Research Center, and Iowa State University — say that U.S. corn ethanol production is having a global effect. As U.S. corn exports declined sharply, production picks up in other countries where yields are lower, requiring conversion of more land for production, and driving global grain prices even higher.

The researchers say the current system has misplaced incentives: farmers are rewarded for the amount of biofuel produced while the resulting carbon emissions are ignored.

"We don't have proper incentives in place because landowners are rewarded for producing palm oil and other products but not rewarded for carbon management," said University of Minnesota Applied Economics professor Stephen Polasky, a co-author of the study. "This creates incentives for excessive land clearing and can result in large increases in carbon emissions. Creating some sort of incentive for carbon sequestration, or penalty for carbon emissions, from land use is vital if we are serious about addressing this problem."

Biofuels that work
Still the authors say that some biofuels do not contribute carbon emissions to the atmosphere because they do not require clearing of native vegetation. These include fuels produced from agricultural waste, weedy grasses, and woody biomass grown on lands unsuitable for conventional crops.

"Biofuels made on perennial crops grown on degraded land that is no longer useful for growing food crops may actually help us fight global warming," said University of Minnesota researcher Jason Hill, a co-author. "One example is ethanol made from diverse mixtures of native prairie plants. Minnesota is well poised in this respect."

The researches recommend that the full environmental impact of biofuel production be evaluated when making decisions on energy sources.

"In finding solutions to climate change, we must ensure that the cure is not worse than the disease," noted Jimmie Powell, who leads the energy team at The Nature Conservancy. "We cannot afford to ignore the consequences of converting land for biofuels. Doing so means we might unintentionally promote fuel alternatives that are worse than fossil fuels they are designed to replace. These findings should be incorporated into carbon emissions policy going forward."

"We will need to implement many approaches simultaneously to solve climate change. There is no silver bullet, but there are many silver BBs," said Fargione. "Some biofuels may be one silver BB, but only if produced without requiring additional land to be converted from native habitats to agriculture."

References:
Fargione, J. el al (2008). "Land Clearing and the Biofuel Carbon Debt." Science, February 7, 2008, DOI: 10.1126/science.1152747

Searchinger, T. el al (2008). "Use of U.S. Croplands For Biofuels Increases Greenhouse Gasses Through Emissions From Land Use Change." Science, February 7, 2008, DOI: 10.1126/science.1151861


0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home