<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    Some $170 billion in new technology development projects, infrastructure equipment and construction, and biofuel refineries will result from the ethanol production standards contained the new U.S. Energy Bill, says BIO, the global Biotechnology Industry Organization. According to Brent Erickson, BIO's executive vice president "Such a new energy infrastructure has not occurred in more than 100 years. We are at the point where we were in the 1850s when kerosene was first distilled and began to replace whale oil. This technology will be coming so fast that what we say today won't be true in two years." Chemical & Engineering News - January 07, 2007.

    Scottish and Southern Energy plc, the UK's second largest power company, has completed the acquisition of Slough Heat and Power Ltd from SEGRO plc for a total cash consideration of £49.25m. The 101MW CHP plant is the UK’s largest dedicated biomass energy facility fueled by wood chips, biomass and waste paper. Part of the plant is contracted under the Non Fossil Fuel Obligation and part of it produces over 200GWH of output qualifying for Renewable Obligation Certificates (ROCs), which is equivalent to around 90MW of wind generation. Scottish & Southern Energy - January 2, 2007.

    PetroChina Co Ltd, the country's largest oil and gas producer, plans to invest 800 million yuan to build an ethanol plant in Nanchong, in the southwestern province of Sichuan, its parent China National Petroleum Corp said. The ethanol plant has a designed annual capacity of 100,000 tons. ABCMoneyNews - December 21, 2007.

    Mexico passed legislation to promote biofuels last week, offering unspecified support to farmers that grow crops for the production of any renewable fuel. Agriculture Minister Alberto Cardenas said Mexico could expand biodiesel faster than ethanol. More soon. Reuters - December 20, 2007.

    Oxford Catalysts has placed an order worth approximately €700,000 (US$1 million) with the German company Amtec for the purchase of two Spider16 high throughput screening reactors. The first will be used to speed up the development of catalysts for hydrodesulphurisation (HDS). The second will be used to further the development of catalysts for use in gas to liquid (GTL) and Fischer-Tropsch processes which can be applied to next generation biofuels. AlphaGalileo - December 18, 2007.

    According to the Instituto Brasileiro de Geografia e Estatística (IBGE), Brazil's production of sugarcane will increase from 514,1 million tonnes this season, to a record 561,8 million tonnes in the 2008/09 cyclus - an increase of 9.3%. New numbers are also out for the 2007 harvest in Brazil's main sugarcane growing region, the Central-South: a record 425 million tonnes compared to 372,7 million tonnes in 2006, or a 14% increase. The estimate was provided by Unica – the União da Indústria de Cana-de-Açúcar. Jornal Cana - December 16, 2007.

    The University of East Anglia and the UK Met Office's Hadley Centre have today released preliminary global temperature figures for 2007, which show the top 11 warmest years all occurring in the last 13 years. The provisional global figure for 2007 using data from January to November, currently places the year as the seventh warmest on records dating back to 1850. The announcement comes as the Secretary-General of the World Meteorological Organization (WMO), Michel Jarraud, speaks at the Conference of the Parties (COP) in Bali. Eurekalert - December 13, 2007.

    The Royal Society of Chemistry has announced it will launch a new journal in summer 2008, Energy & Environmental Science, which will distinctly address both energy and environmental issues. In recognition of the importance of research in this subject, and the need for knowledge transfer between scientists throughout the world, from launch the RSC will make issues of Energy & Environmental Science available free of charge to readers via its website, for the first 18 months of publication. This journal will highlight the important role that the chemical sciences have in solving the energy problems we are facing today. It will link all aspects of energy and the environment by publishing research relating to energy conversion and storage, alternative fuel technologies, and environmental science. AlphaGalileo - December 10, 2007.

    Dutch researcher Bas Bougie has developed a laser system to investigate soot development in diesel engines. Small soot particles are not retained by a soot filter but are, however, more harmful than larger soot particles. Therefore, soot development needs to be tackled at the source. Laser Induced Incandescence is a technique that reveals exactly where soot is generated and can be used by project partners to develop cleaner diesel engines. Terry Meyer, an Iowa State University assistant professor of mechanical engineering, is using similar laser technology to develop advanced sensors capable of screening the combustion behavior and soot characteristics specifically of biofuels. Eurekalert - December 7, 2007.

    Lithuania's first dedicated biofuel terminal has started operating in Klaipeda port. At the end of November 2007, the stevedoring company Vakaru krova (VK) started activities to manage transshipments. The infrastructure of the biodiesel complex allows for storage of up to 4000 cubic meters of products. During the first year, the terminal plans to transship about 70.000 tonnes of methyl ether, after that the capacities of the terminal would be increased. Investments to the project totaled €2.3 million. Agrimarket - December 5, 2007.

    New Holland supports the use of B100 biodiesel in all equipment with New Holland-manufactured diesel engines, including electronic injection engines with common rail technology. Overall, nearly 80 percent of the tractor and equipment manufacturer's New Holland-branded products with diesel engines are now available to operate on B100 biodiesel. Tractor and equipment maker John Deere meanwhile clarified its position for customers that want to use biodiesel blends up to B20. Grainnet - December 5, 2007.

    According to Wetlands International, an NGO, the Kyoto Protocol as it currently stands does not take into account possible emissions from palm oil grown on a particular type of land found in Indonesia and Malaysia, namely peatlands. Mongabay - December 5, 2007.

    Malaysia's oil & gas giant Petronas considers entering the biofuels sector. Zamri Jusoh, senior manager of Petronas' petroleum development management unit told reporters "of course our focus is on oil and gas, but I think as we move into the future we cannot ignore the importance of biofuels." AFP - December 5, 2007.

    In just four months, the use of biodiesel in the transport sector has substantially improved air quality in Metro Manila, data from the Philippines Department of Environment and Natural Resources (DENR) showed. A blend of one percent coco-biodiesel is mandated by the Biofuels Act of 2007 which took effect last May. By 2009, it would be increased to two percent. Philippine Star - December 4, 2007.

    Kazakhstan will next year adopt laws to regulate its fledgling biofuel industry and plans to construct at least two more plants in the next 18 months to produce environmentally friendly fuel from crops, industry officials said. According to Akylbek Kurishbayev, vice-minister for agriculture, he Central Asian country has the potential to produce 300,000 tons a year of biodiesel and export half. Kazakhstan could also produce up to 1 billion liters of bioethanol, he said. "The potential is huge. If we use this potential wisely, we can become one of the world's top five producers of biofuels," Beisen Donenov, executive director of the Kazakhstan Biofuels Association, said on the sidelines of a grains forum. Reuters - November 30, 2007.

    SRI Consulting released a report on chemicals from biomass. The analysis highlights six major contributing sources of green and renewable chemicals: increasing production of biofuels will yield increasing amounts of biofuels by-products; partial decomposition of certain biomass fractions can yield organic chemicals or feedstocks for the manufacture of various chemicals; forestry has been and will continue to be a source of pine chemicals; evolving fermentation technology and new substrates will also produce an increasing number of chemicals. Chemical Online - November 27, 2007.

    German industrial conglomerate MAN AG plans to expand into renewable energies such as biofuels and solar power. Chief Executive Hakan Samuelsson said services unit Ferrostaal would lead the expansion. Reuters - November 24, 2007.

    Analysts think Vancouver-based Ballard Power Systems, which pumped hundreds of millions and decades of research into developing hydrogen fuel cells for cars, is going to sell its automotive division. Experts describe the development as "the death of the hydrogen highway". The problems with H2 fuel cell cars are manifold: hydrogen is a mere energy carrier and its production requires a primary energy input; production is expensive, as would be storage and distribution; finally, scaling fuel cells and storage tanks down to fit in cars remains a huge challenge. Meanwhile, critics have said that the primary energy for hydrogen can better be used for electricity and electric vehicles. On a well-to-wheel basis, the cleanest and most efficient way to produce hydrogen is via biomass, so the news is a set-back for the biohydrogen community. But then again, biomass can be used more efficiently as electricity for battery cars. Canada.com - November 21, 2007.

    South Korea plans to invest 20 billion won (€14.8/$21.8 million) by 2010 on securing technologies to develop synthetic fuels from biomass, coal and natural gas, as well as biobutanol. 29 private companies, research institutes and universities will join this first stage of the "next-generation clean energy development project" led by South Korea's Ministry of Commerce, Industry and Energy. Korea Times - November 19, 2007.

    OPEC leaders began a summit today with Venezuelan President Hugo Chavez issuing a chilling warning that crude prices could double to US$200 from their already-record level if the United States attacked Iran or Venezuela. He urged assembled leaders from the OPEC, meeting for only the third time in the cartel's 47-year history, to club together for geopolitical reasons. But the cartel is split between an 'anti-US' block including Venezuela, Iran, and soon to return ex-member Ecuador, and a 'neutral' group comprising most Gulf States. France24 - November 17, 2007.

    The article "Biofuels: What a Biopact between North and South could achieve" published in the scientific journal Energy Policy (Volume 35, Issue 7, 1 July 2007, Pages 3550-3570) ranks number 1 in the 'Top 25 hottest articles'. The article was written by professor John A. Mathews, Macquarie University (Sydney, Autralia), and presents a case for a win-win bioenergy relationship between the industrialised and the developing world. Mathews holds the Chair of Strategic Management at the university, and is a leading expert in the analysis of the evolution and emergence of disruptive technologies and their global strategic management. ScienceDirect - November 16, 2007.

Creative Commons License


Saturday, January 05, 2008

Bioenergy, conservation and wildlife protection can boost each other

Discussions about biofuels and bioenergy often focus on their potential impacts on biodiversity and on risks like deforestation. However, these legitimate concerns should not veil the fact that energy crops can just as well contribute to strengthening ecosystem services, to conservation, to the fight against desertification and erosion, and to the restoration of wildlife habitats.

Biopact has referred to numerous examples of this kind: the creation of the Green Wall of the Sahara, the greening of toxic brownfields by energy crops to allow wildlife to reemerge, the revitalisation of depleted soils via carbon negative bioenergy (terra preta), or the restoration of prairies and biodiversity with high-yielding polycultures of native grasses in the U.S. More: the creation of bioenergy plantations to stop desertification in Inner Mongolia, the prevention of forest fires by utilizing undergrowth as biofuel feedstock, replanting lost genetic resources (e.g. switchgrass varieties) to restore original biodiversity, switching to modern biofuels as a way to prevent deforestation, or stripping biomass for energy to revitalise ecosystems destroyed by nitrogen pollution.

An interesting new example comes from the Minnesota Department of Natural Resources (DNR), which, once a year, brings together the people most involved in the issues surrounding hunting and fishing in the region. Usually this gathering concentrates on predictable topics, but this year the meeting in St. Cloud took on the issue of bioenergy head on. DNR officials sense that bioenergy - both biofuels for transport as well as biomass for power and heat - will be a big part of Minnesota's future, and that it could play an important role in conservation.

According to Mark Lindquist, energy/biofuels project manager with the DNR, under the right conditions, biofuels could provide a big boost for soil, water, and wildlife too. The right conditions include using native plants grown on previously disturbed or highly erodible land not well suited to agriculture, using residues from other enterprises such as agriculture or logging, and minimizing inputs of fossil fuels into production and distribution.
[Biofuels offer] an opportunity to harness market forces to help support our conservation agenda, so we can be putting more grass on the landscape, more trees on the landscape, creating more wildlife habitat, more recreational opportunities, improving water quality, and helping stabilize the flow of water through our agricultural watersheds. - Mark Lindquist, energy/biofuels project manager with the DNR
Conservationists should have a say in how the future of bioenergy plays out in the state, according to Steve Hirsch, with the DNR's ecological resources division. "Are we going to be at the table and help direct this, so we can have mutual benefits for fish and wildlife while we try to solve some of our energy needs, or is it going to be done without us at the table with no concern for conservation? That's why we're trying to get very involved with this issue", Hirsh says.

Beyond corn ethanol
When thinking of extracting energy from plants, most Americans think of ethanol made from corn grain. It's no wonder that's what comes to mind: in Minnesota alone, 17 factories produce the popular gasoline supplement, and four more are being built. In 2006 alone, Minnesotans pumped some 263 million gallons of the biofuel into cars. At first glance it seems to be a fine fuel. Corn is plentiful, and farmers know how to grow it. The technology for converting it to a fuel for automobile engines is well worked out and available on a commercial scale.

But from an environmental perspective, corn ethanol has its limitations. From tilling to fertilizing to irrigating to distilling, corn ethanol production consumes large amounts of fossil fuels and water - offsetting some of the biofuel benefits of being local, renewable, and carbon neutral. And the increased demand for corn puts pressure on farmers to convert grasslands to cornfields. Soil erosion and water pollution increase when grassland is plowed and fertilized for corn. And few animals find cornfields to be as satisfactory for habitat as native grasslands and brushlands.

Corn starch is not the only source of plant power, however. In fact, it represents only the tiniest fraction of the energy Minnesota vegetation gathers from the sun. The vast bulk is tied up in cellulose, a compound that contains the same chemical components as starch, but in a different configuration. Ethanol made from cellulose instead of corn starch uses parts from all kinds of plants, including grasses, shrubs, and trees. And that could make the environmental impact of ethanol production far more favorable for several reasons.

First, many plants - particularly native perennial plants - need far less fossil fuel input to grow, so production of ethanol from native plants would generate less CO2. Prairie grasses, such as switchgrass, big bluestem, prairie cordgrass, and Indiangrass (or better yet, a mixture including wildflowers), also provide superb wildlife habitat. Grasses help soil stay in place and filter polluted runoff. If plant species and genetic makeup, land, and harvest regimen were coordinated to maximize natural resource potential, native vegetation managed for cellulosic biofuels could provide far better homes for ducks, deer, songbirds, prairie chickens, and other native species than row crops:
:: :: :: :: :: :: :: :: ::
We think [biomass harvest] can have a positive benefit, particularly if it means something that's in row crop production now is converted to grass, or if it means we have lands that are decadent that we can then use biomass harvest as a management tool to increase the productivity of those lands for wildlife. DNR currently invests hundreds of thousands of dollars each year in brushland management for brushland-dependent wildlife species such as sharp-tailed grouse. If brush becomes a commodity, management could start to pay for itself. That's a win-win situation for us. We couldn't ask for anything more.- Bill Penning, DNR farmland wildlife program leader
J. Drake Hamilton, science policy director for Fresh Energy, a Twin Cities-based nonprofit group, says that, combined with energy efficiency, cellulosic biofuels could shape a healthier energy future for Minnesota. "We think of cellulosic ethanol as the next generation we need to get to as soon as possible," she says. "We think it represents the best opportunity for replacing oil with a renewable fuel and at the same time improving our national security and our environment."

Start-up Challenge
Cellulosic ethanol, unfortunately, is a lot easier to envision than to produce. The microbes that turn starch into ethanol can't put a dent in cellulose's more durable chemical bonds, so cellulosic ethanol production requires sophisticated processing that's not yet available on an industrial scale. Cellulosic feedstock yields less energy per pound than corn kernels, so more has to be hauled (presumably in fuel-burning vehicles) to the processing plant. Corn enjoys generous government subsidies that give it an economic edge over other feedstocks. And then there's the chicken-and-egg challenge of producing feedstock and building conversion facilities: Who's going to do one before the other is in place? "There's a lot of barriers and hurdles that we've got to figure out," Lindquist says.

But things are moving forward. Research groups like the Initiative for Renewable Energy and the Environment at the University of Minnesota are hot on the trail of better ways to grow, harvest, and transport biomass and to convert it to usable fuels. Last February the U.S. Department of Energy announced the allocation of nearly $400 million to set up six commercial-scale production facilities around the country. They are expected to make more than 130 million gallons of ethanol per year from agricultural residues, wood wastes, and energy crops such as prairie grass. And in May the energy agency announced it would provide up to $200 million over five years to fund small-scale facilities to test innovative ways of producing liquid fuels, along with other products, from cellulosic feedstock.

Lindquist says it's a matter of time. "You've got to hit that single and get the runner on first, and then another runner, and advance runners around the bases," he says. "Eventually, if you focus on getting runners on base, you score runs."

Heat and Electricity Too
Though ethanol for automobiles is getting the most attention, it's not the only way to tap the solar energy stored in Minnesota's abundant vegetation. If you've ever toasted a marshmallow or warmed up by a woodstove, you've been the beneficiary of another approach -- using plants to make heat and electricity. Paper mills have been burning wood scraps for fuel since the 1920s. Today, according to DNR forest products utilization and marketing program leader Keith Jacobson, virtually every pulpwood facility in the state uses bark, sawdust, or other tree bits and pieces to energize its operation, saving more than 3 trillion Btus annually in fossil fuels.

As fuel costs climb and concern about climate-altering carbon emissions from coal-fired power plants and natural-gas burning grows, more businesses are turning to wood. Power plants and industrial facilities in Grand Rapids, Cloquet, Duluth, Hibbing, Virginia, St. Paul, and Little Falls use wood waste for energy.

Electricity generated from wood could also power electric cars. A report published last September by the Duluth-based Natural Resources Research Institute estimates that an electric car, recharged by electricity derived from woody biomass, could travel 2.5 times farther on a dry ton of woody biomass than a car fueled by cellulosic ethanol. The report estimates that Minnesota lands could sustainably produce 1.3 million cords of logs and more than 2.6 million dry tons of woody crops, wood from thinning stands, and harvest residues annually for energy.

"There's certainly a role for that," says Don Arnosti, director of forestry with the Institute for Agriculture and Trade Policy. However, Arnosti emphasizes, it's important that such use respects the biological limits of the system by harvesting trees sustainably and leaving enough residue on the site to provide habitat, restore soil nutrients, and minimize runoff.

Jacobson agrees. "It's a good thing if it's done right," he says. "There are solid forest management reasons and certainly economic reasons and renewable energy and even national security reasons for utilizing more wood for biomass for energy. But that comes with some risks. There is value for leaving the stuff on site for different kinds of wildlife habitat, soil nutrients, site productivity maintenance, aesthetics."

To that end, DNR Forestry and the Minnesota Forest Resources Council recently released guidelines for harvesting logging leftovers and other woody biomass for fuel in a way that protects habitat, soil, and water.

"We're as on top of it as anybody," Jacobson says. "If you look around the country, these are the first biomass guidelines that are existing to my knowledge. I think we're ahead of the game."

More Options
Energy innovators in central and southern Minnesota are gearing up to turn other sources of biomass into heat and electricity as well. The University of Minnesota, Morris, started construction last summer on a research and demonstration biomass gasification facility that will use a variety of cellulosic fuels, including cornstalks, other agricultural byproducts, and native prairie plants, to meet some 80 percent of the campus heating and cooling needs. The Phillips Biomass Community Energy Project in Minneapolis is looking at retooling a retired incinerator to use city tree trimmings and crop residues to provide heat and electricity. The Central MN Ethanol Co-op in Little Falls is using gas made from wood waste in place of natural gas to make corn ethanol and has plans to build a cellulosic ethanol plant next door that uses wood chips.

All told, about three dozen Minnesota facilities currently use some type of cellulosic fuel -- wood waste, agricultural residue, or something else -- to produce heat and power, and at least 20 more are preparing to join them.

"We just think this is a better way to go," says Paul Kramer, vice president of Rahr Malting in Shakopee.

Rahr and the Shakopee Mdewakanton Sioux Community broke ground last September for a $55-million, 16.5-megawatt facility that will burn byproducts of malt production along with other cellulosic fuels, including crops and crop residues, to produce electricity and heat for the malting process and the community. Kramer says the heat generated by the facility will replace the consumption of 1.1 million Mcf (1,000 cubic feet) of natural gas each year.

"It's sustainable, that's what I like about it," Kramer says. "It's good stewardship of Btus."
Two-Edged Technology

Minnesotans will likely be hearing more about cellulosic biofuel in months and years to come. The 2007 Minnesota Legislature funded feasibility studies for several proposed bioenergy facilities, gave the Minnesota Board of Water and Soil Resources $200,000 to put together a plan for encouraging landowners to grow native perennial plants on existing croplands for energy, and set a goal for cellulosic ethanol production in the state. The Legislature also assigned a DNR-led task force the job of figuring out the best way to produce high-quality native prairie seed. Lands planted to prairie with the seeds could provide biomass fuel and environmental benefits such as carbon sequestration, wildlife habitat, and water-quality protection.

The Legislative-Citizen Commission on Minnesota Resources and the U.S. Geological Survey recently awarded University of Minnesota researchers nearly $1.1 million to demonstrate how native prairies can produce biofuels while also filtering polluted water. At the federal level, the farm bill, though still stalled at this writing, shows some glimmers of hope for encouraging biofuels that are good for conserving natural resources as well as the nation's energy supply.

Lindquist predicts that in one form or another -- or, more likely, in one form and another -- cellulosic biofuels will be an important part of Minnesota's energy future. But exactly how it will all shake out, no one knows.

"This is brand-new stuff," he says. "We're basically trying to roll out a revolution in our energy system and our agricultural system and our natural resource system all at once."

The main thing to remember, he says, is to think carefully about the how and where of biofuels development. Will cellulosic fuel production disturb natural lands? Or will it encourage naturalizing already disturbed land? Will planting and harvesting damage healthy habitat? Or can growing cellulosic fuels make degraded land ecologically healthier?

"It's not quite the same kind of sense of environmental home run that wind and solar energy are," Lindquist says.

Arnosti agrees. "I refer to biomass or bioenergy as a two-edged sword -- it can cut both ways," he says. "If we are smart enough as a society and a community to deploy this technology wisely, we can achieve many benefits."

Whether that's what actually happens, he adds, depends on all of us.

"I think it's really important that the public get involved," he says. "I would ask the people of Minnesota to look behind the curtain, like in The Wizard of Oz. Ask tough questions, and try to think long term."

Picture: Indian grass and other native plants can offer both habitat for wildlife and a source of biofuels. Credit: Jim Brandenburg

References:
Minnesota Department of Natural Resources: Land of Biofuels?, Minnesota Conservation Volunteer, January - February, 2008.

Minnesota Public Radio: Alternative energy plans a boost to wildlife habitat - January 4, 2008.

Biopact: Greening the desert with biofuels: Inner Mongolia peasants show it's possible - August 14, 2007

Biopact: China to boost forest-based bioenergy, helps win battle against desertification - July 17, 2007

Biopact: Terra preta: how biofuels can become carbon-negative and save the planet - Friday, August 18, 2006

Biopact: EU and Africa to build a 'Green Wall' across the Sahara - December 09, 2007

Biopact: Turning brownfields green with biofuels - project in the UK - April 26, 2007

Biopact: BioReGen project expands: greening brownfield sites with energy crops and biofuels - December 10, 2007

Biopact: Tallgrass Prairie Center to study polyculture prairie hay for bio-electricity: combining conservation and restoration with bioenergy - December 03, 2007

Biopact: Carbon negative biofuels: from monocultures to polycultures - December 08, 2006

Biopact: Soil scientist: conserving forests by utilizing them for bioenergy - December 28, 2007

Biopact: Nepal can cut carbon emissions by 6 million tonnes through rural biogas systems - December 13, 2007

Biopact: Geneticist finds switchgrass could bridge bioenergy and conservation - October 15, 2007

Biopact: European project finds nitrogen damages biodiversity - biomass stripping coupled to bioenergy could offer conservation strategy - October 13, 2007

Biopact: European project finds nitrogen damages biodiversity - biomass stripping coupled to bioenergy could offer conservation strategy - October 13, 2007

0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home