<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    Mongabay, a leading resource for news and perspectives on environmental and conservation issues related to the tropics, has launched Tropical Conservation Science - a new, open access academic e-journal. It will cover a wide variety of scientific and social studies on tropical ecosystems, their biodiversity and the threats posed to them. Tropical Conservation Science - March 8, 2008.

    At the 148th Meeting of the OPEC Conference, the oil exporting cartel decided to leave its production level unchanged, sending crude prices spiralling to new records (above $104). OPEC "observed that the market is well-supplied, with current commercial oil stocks standing above their five-year average. The Conference further noted, with concern, that the current price environment does not reflect market fundamentals, as crude oil prices are being strongly influenced by the weakness in the US dollar, rising inflation and significant flow of funds into the commodities market." OPEC - March 5, 2008.

    Kyushu University (Japan) is establishing what it says will be the world’s first graduate program in hydrogen energy technologies. The new master’s program for hydrogen engineering is to be offered at the university’s new Ito campus in Fukuoka Prefecture. Lectures will cover such topics as hydrogen energy and developing the fuel cells needed to convert hydrogen into heat or electricity. Of all the renewable pathways to produce hydrogen, bio-hydrogen based on the gasification of biomass is by far both the most efficient, cost-effective and cleanest. Fuel Cell Works - March 3, 2008.


    An entrepreneur in Ivory Coast has developed a project to establish a network of Miscanthus giganteus farms aimed at producing biomass for use in power generation. In a first phase, the goal is to grow the crop on 200 hectares, after which expansion will start. The project is in an advanced stage, but the entrepreneur still seeks partners and investors. The plantation is to be located in an agro-ecological zone qualified as highly suitable for the grass species. Contact us - March 3, 2008.

    A 7.1MW biomass power plant to be built on the Haiwaiian island of Kaua‘i has received approval from the local Planning Commission. The plant, owned and operated by Green Energy Hawaii, will use albizia trees, a hardy species that grows in poor soil on rainfall alone. The renewable power plant will meet 10 percent of the island's energy needs. Kauai World - February 27, 2008.


Creative Commons License


Friday, March 23, 2007

Vinod Khosla predicts exponential growth of biofuels, to replace 25% of world fuel demand

Top venture capitalist Vinod Khosla, the founder of SUN Microsystems and a major investor in both Brazilian biofuels (earlier post) and cellulosic ethanol (earlier post), says that the biofuels industry is poised for exponential growth and that biofuels made from cellulose appear to be the most promising alternative fuels over the long-term. Cellulose, one of the most abundant organic materials on earth, can be converted into liquid fuels either via a biochemical or a thermochemical conversion process.

During keynote speeches at the World Congress on Industrial Biotechnology and Bioprocessing, Khosla echoed the analysis made by Dr. Jens Riese of McKinsey & Co. who highlighted the significant reductions in greenhouse gas emissions achievable with cellulose-based biofuels.

In a speech titled “The Role of Venture Capital in Developing Cellulosic Ethanol,” Khosla outlined the range of technologies currently being commercialized to convert cellulosic biomass to transportation fuels. Khosla said that the U.S. Department of Energy’s recent grants to cooperatively fund biorefineries that produce ethanol from cellulose is an acknowledgment that the technology is moving faster than expected. He said that a 100 percent replacement of petroleum transportation fuels with biofuels is achievable, and predicted that ethanol from cellulose technology will be cost competitive with current ethanol production by 2009.

Khosla also stated that ethanol from cellulose can significantly reduce carbon dioxide emissions, even achieving a net gain in greenhouse gas reduction. Khosla is the head of Khosla Ventures, a company that actively invests in breakthrough scientific work in clean technology areas, such as biorefineries for energy and bioplastics, solar, and other environmentally friendly technologies.

Dr. Jens Riese of McKinsey & Co. also addressed the World Congress plenary session with a speech titled “Beyond the Hype: Global Growth in the Biofuels Industry.” Riese predicted that global annual biofuel capacity would double to 25 billion gallons over the next five years and could reach 80 billion gallons – meeting 10 percent of world transportation fuel demand, enough to replace the annual oil production for fuel of Saudi Arabia – by 2020. According to McKinsey & Company’s model, biofuels can economically replace 25 percent of transportation fuel with crude oil above $50 per barrel. He concluded that the race is on to build a biofuels industry and that companies should invest now:
:: :: :: :: :: :: :: :: ::

Further, Riese pointed out that ethanol from cellulose is the most cost-effective way of achieving greenhouse gas reductions, following measure to reduce demand for energy. Riese is a partner at McKinsey & Co., a leading global management consulting firm and is a top expert in industrial biotechnology.

“We are excited to see industry leaders echo our long-held enthusiasm and optimism about the exciting opportunities presented by ethanol from cellulose,” said BIO’s Brent Erickson. “Indeed, we are optimistic about the opportunities presented from multiple sources of ethanol as a means to reduce reliance on fossil fuels and our environmental footprint.” BIO supports the production of ethanol from all feedstocks. Agricultural biotechnology is helping to increase corn yields, while industrial biotechnology is helping to convert corn starch and crop residues into ethanol more efficiently. With ongoing advances in biotechnology, biofuels can help America meet nearly half its transportation-fuel needs by the middle of this century.

The World Congress is hosted by the Biotechnology Industry Organization (BIO), the American Chemical Society, the National Agricultural Biotechnology Council, the European Federation of Biotechnology, BIOTECanada and EuropaBIO.


2 Comments:

Blogger Francesco DeParis said...

I think that cellulosic ethanol is the future of the ethanol industry. At this point investors and the general public are drawing blanks as to the commercial viability of cellulosic ethanol. I shared my thoughts on Khosla's statments today. Cellulosic Enzyme Cost Reduction Still a WIP (work in progress)

There is an inherent transparency problem regarding available ROI information for investors from the alternative energy community.I wrote a post about this earlier this week, "The Transparency Problem Alternative Energy Companies Have Dealing With Investors".

Once these issues are taken care of, consumers and investors at large will embrace cellulosic technology.

Cheers,
Francesco DeParis
Energy Spin: Alternative Energy Blog For Investors-Served Daily

11:41 PM  
Blogger La Wahie Biotech do Brasil said...

ETHANOL-PRODUCTION WITH BLUE-GREEN-ALGAE
A SOLUTION AFTER PEAK-OIL AND OIL-CRASH

University of Hawai'i Professor Pengchen "Patrick" Fu developed an innovative technology, to produce high amounts of ethanol with modified cyanobacterias, as a new feedstock for ethanol, without entering in conflict with the food and feed-production .

Fu has developed strains of cyanobacteria — one of the components of pond scum — that feed on atmospheric carbon dioxide, and produce ethanol as a waste product.

He has done it both in his laboratory under fluorescent light and with sunlight on the roof of his building. Sunlight works better, he said.

It has a lot of appeal and potential. Turning waste into something useful is a good thing. And the blue-green-algae needs only sun and wast- recycled from the sugar-cane-industry, to grow and to produce directly more and more ethanol. With this solution, the sugarcane-based ethanol-industry in Brazil and other tropical regions will get a second way, to produce more biocombustible for the worldmarket.

The technique may need adjusting to increase how much ethanol it yields, but it may be a new technology-challenge in the near future.

The process was patented by Fu and UH in January, but there's still plenty of work to do to bring it to a commercial level. The team of Fu foundet just the start-up LA WAHIE BIOTECH INC. with headquarter in Hawaii and branch-office in Brazil.

PLAN FOR AN EXPERIMENTAL ETHANOL PLANT

Fu figures his team is two to three years from being able to build a full-scale
ethanol plant, and they are looking for investors or industry-partners (jointventure).

He is fine-tuning his research to find different strains of blue-green algae that will produce even more ethanol, and that are more tolerant of high levels of ethanol. The system permits, to "harvest" continuously ethanol – using a membrane-system- and to pump than the blue-green-algae-solution in the Photo-Bio-Reactor again.

Fu started out in chemical engineering, and then began the study of biology. He has studied in China, Australia, Japan and the United States, and came to UH in 2002 after a stint as scientist for a private company in California.

He is working also with NASA on the potential of cyanobacteria in future lunar and Mars colonization, and is also proceeding to take his ethanol technology into the marketplace. A business plan using his system, under the name La Wahie Biotech, won third place — and a $5,000 award — in the Business Plan Competition at UH's Shidler College of Business.
Daniel Dean and Donavan Kealoha, both UH law and business students, are Fu's partners. So they are in the process of turning the business plan into an operating business.

The production of ethanol for fuel is one of the nation's and the world's major initiatives, partly because its production takes as much carbon out of the atmosphere as it dumps into the atmosphere. That's different from fossil fuels such as oil and coal, which take stored carbon out of the ground and release it into the atmosphere, for a net increase in greenhouse gas.
Most current and planned ethanol production methods depend on farming, and in the case of corn and sugar, take food crops and divert them into energy.

Fu said crop-based ethanol production is slow and resource-costly. He decided to work with cyanobacteria, some of which convert sunlight and carbon dioxide into their own food and release oxygen as a waste product.

Other scientists also are researching using cyanobacteria to make ethanol, using different strains, but Fu's technique is unique, he said. He inserted genetic material into one type of freshwater cyanobacterium, causing it to produce ethanol as its waste product. It works, and is an amazingly efficient system.

The technology is fairly simple. It involves a photobioreactor, which is a
fancy term for a clear glass or plastic container full of something alive, in which light promotes a biological reaction. Carbon dioxide gas is bubbled through the green mixture of water and cyanobacteria. The liquid is then passed through a specialized membrane that removes the
ethanol, allowing the water, nutrients and cyanobacteria to return to the
photobioreactor.

Solar energy drives the conversion of the carbon dioxide into ethanol. The partner of Prof. Fu in Brazil in the branch-office of La Wahie Biotech Inc. in Aracaju - Prof. Hans-Jürgen Franke - is developing a low-cost photo-bio-reactor-system. Prof. Franke want´s soon creat a pilot-project with Prof. Fu in Brazil.

The benefit over other techniques of producing ethanol is that this is simple and quick—taking days rather than the months required to grow crops that can be converted to ethanol.

La Wahie Biotech Inc. believes it can be done for significantly less than the cost of gasoline and also less than the cost of ethanol produced through conventional methods.

Also, this system is not a net producer of carbon dioxide: Carbon dioxide released into the environment when ethanol is burned has been withdrawn from the environment during ethanol production. To get the carbon dioxide it needs, the system could even pull the gas out of the emissions of power plants or other carbon dioxide producers. That would prevent carbon dioxide release into the atmosphere, where it has been implicated as a
major cause of global warming.
Honolulo – Hawaii/USA and Aracaju – Sergipe/Brasil - 15/09/2008

Prof. Pengcheng Fu – E-Mail: [email protected]
Prof. Hans-Jürgen Franke – E-Mail: [email protected]

Tel.: 00-55-79-3243-2209

9:27 PM  

Post a Comment

Links to this post:

Create a Link

<< Home