<body> -------------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive » Climate_change
Nature Blog Network


    Spanish company Ferry Group is to invest €42/US$55.2 million in a project for the production of biomass fuel pellets in Bulgaria. The 3-year project consists of establishing plantations of paulownia trees near the city of Tran. Paulownia is a fast-growing tree used for the commercial production of fuel pellets. Dnevnik - Feb. 20, 2007.

    Hungary's BHD Hõerõmû Zrt. is to build a 35 billion Forint (€138/US$182 million) commercial biomass-fired power plant with a maximum output of 49.9 MW in Szerencs (northeast Hungary). Portfolio.hu - Feb. 20, 2007.

    Tonight at 9pm, BBC Two will be showing a program on geo-engineering techniques to 'save' the planet from global warming. Five of the world's top scientists propose five radical scientific inventions which could stop climate change dead in its tracks. The ideas include: a giant sunshade in space to filter out the sun's rays and help cool us down; forests of artificial trees that would breath in carbon dioxide and stop the green house effect and a fleet futuristic yachts that will shoot salt water into the clouds thickening them and cooling the planet. BBC News - Feb. 19, 2007.

    Archer Daniels Midland, the largest U.S. ethanol producer, is planning to open a biodiesel plant in Indonesia with Wilmar International Ltd. this year and a wholly owned biodiesel plant in Brazil before July, the Wall Street Journal reported on Thursday. The Brazil plant is expected to be the nation's largest, the paper said. Worldwide, the company projects a fourfold rise in biodiesel production over the next five years. ADM was not immediately available to comment. Reuters - Feb. 16, 2007.

    Finnish engineering firm Pöyry Oyj has been awarded contracts by San Carlos Bioenergy Inc. to provide services for the first bioethanol plant in the Philippines. The aggregate contract value is EUR 10 million. The plant is to be build in the Province of San Carlos on the north-eastern tip of Negros Island. The plant is expected to deliver 120,000 liters/day of bioethanol and 4 MW of excess power to the grid. Kauppalehti Online - Feb. 15, 2007.

    In order to reduce fuel costs, a Mukono-based flower farm which exports to Europe, is building its own biodiesel plant, based on using Jatropha curcas seeds. It estimates the fuel will cut production costs by up to 20%. New Vision (Kampala, Uganda) - Feb. 12, 2007.

    The Tokyo Metropolitan Government has decided to use 10% biodiesel in its fleet of public buses. The world's largest city is served by the Toei Bus System, which is used by some 570,000 people daily. Digital World Tokyo - Feb. 12, 2007.

    Fearing lack of electricity supply in South Africa and a price tag on CO2, WSP Group SA is investing in a biomass power plant that will replace coal in the Letaba Citrus juicing plant which is located in Tzaneen. Mining Weekly - Feb. 8, 2007.

    In what it calls an important addition to its global R&D capabilities, Archer Daniels Midland (ADM) is to build a new bioenergy research center in Hamburg, Germany. World Grain - Feb. 5, 2007.

    EthaBlog's Henrique Oliveira interviews leading Brazilian biofuels consultant Marcelo Coelho who offers insights into the (foreign) investment dynamics in the sector, the history of Brazilian ethanol and the relationship between oil price trends and biofuels. EthaBlog - Feb. 2, 2007.

    The government of Taiwan has announced its renewable energy target: 12% of all energy should come from renewables by 2020. The plan is expected to revitalise Taiwan's agricultural sector and to boost its nascent biomass industry. China Post - Feb. 2, 2007.

    Production at Cantarell, the world's second biggest oil field, declined by 500,000 barrels or 25% last year. This virtual collapse is unfolding much faster than projections from Mexico's state-run oil giant Petroleos Mexicanos. Wall Street Journal - Jan. 30, 2007.

    Dubai-based and AIM listed Teejori Ltd. has entered into an agreement to invest €6 million to acquire a 16.7% interest in Bekon, which developed two proprietary technologies enabling dry-fermentation of biomass. Both technologies allow it to design, establish and operate biogas plants in a highly efficient way. Dry-Fermentation offers significant advantages to the existing widely used wet fermentation process of converting biomass to biogas. Ame Info - Jan. 22, 2007.

    Hindustan Petroleum Corporation Limited is to build a biofuel production plant in the tribal belt of Banswara, Rajasthan, India. The petroleum company has acquired 20,000 hectares of low value land in the district, which it plans to commit to growing jatropha and other biofuel crops. The company's chairman said HPCL was also looking for similar wasteland in the state of Chhattisgarh. Zee News - Jan. 15, 2007.

    The Zimbabwean national police begins planting jatropha for a pilot project that must result in a daily production of 1000 liters of biodiesel. The Herald (Harare), Via AllAfrica - Jan. 12, 2007.

    In order to meet its Kyoto obligations and to cut dependence on oil, Japan has started importing biofuels from Brazil and elsewhere. And even though the country has limited local bioenergy potential, its Agriculture Ministry will begin a search for natural resources, including farm products and their residues, that can be used to make biofuels in Japan. To this end, studies will be conducted at 900 locations nationwide over a three-year period. The Japan Times - Jan. 12, 2007.

    Chrysler's chief economist Van Jolissaint has launched an arrogant attack on "quasi-hysterical Europeans" and their attitudes to global warming, calling the Stern Review 'dubious'. The remarks illustrate the yawning gap between opinions on climate change among Europeans and Americans, but they also strengthen the view that announcements by US car makers and legislators about the development of green vehicles are nothing more than window dressing. Today, the EU announced its comprehensive energy policy for the 21st century, with climate change at the center of it. BBC News - Jan. 10, 2007.

    The new Canadian government is investing $840,000 into BioMatera Inc. a biotech company that develops industrial biopolymers (such as PHA) that have wide-scale applications in the plastics, farmaceutical and cosmetics industries. Plant-based biopolymers such as PHA are biodegradable and renewable. Government of Canada - Jan. 9, 2007.


Creative Commons License


Thursday, December 14, 2006

Soil nutrition affects carbon sequestration in forests

Are forests carbon sinks or not? It's a question that keeps many scientists busy, and their answers are as diverse as there are forest types. Researchers studying the same type of forest - tropical rainforests for example - arrive at conflicting conclusions, with one group saying the trees are net CO2 contributors, whereas others find the opposite to be true. Going further, and beyond the mere carbon storage capacity of forests, other scientists are looking at the net contribution of forests to global warming. Here too, results are complex: some forest types (rainforests) actually cool the planet because they produce clouds that reflect light back into the atmosphere, whereas forests at mid-latitudes don't produce this cloud-induced 'albedo-effect' and result in a net warming. Planting trees in these mid-latitudes, as many 'carbon-offsetting' programs do, is probably not a good idea (earlier post).

Now a related, fascinating question that is being studied by several research groups, has to do with the future: what will happen to forests if atmospheric carbon dioxide levels are much higher than today? In other words, suppose the level of CO2 in the atmosphere keeps increasing - which it does in reality -, then what about the capacity of forests to store some of it?

On December 11, United States Dept. of Agriculture (USDA) Forest Service (FS) scientists from the FS Southern Research Station (SRS) unit in Research Triangle Park, NC, along with colleagues from Duke University, published two papers in The Proceedings of the National Academy of Science (PNAS) that provide a more precise understanding of how forests respond to increasing atmospheric concentrations of carbon dioxide (CO2), the major greenhouse gas driving climate change.

Building on preliminary studies reported in Nature, the researchers found that trees can only increase wood growth from elevated CO2 if there is enough leaf area to support that growth. Leaf area, in turn, is limited by soil nutrition; without adequate soil nutrition, trees respond to elevated CO2 by transferring carbon below ground, then recycling it back to the atmospheric through respiration:
:: :: :: :: :: :: :: :: :: :: ::

"With sufficient soil nutrition, forests increase their ability to tie up, or sequester carbon in woody biomass under increasing atmospheric CO2 concentrations," says Kurt Johnsen, SRS researcher involved in the project. "With lower soil nutrition, forests still sequester carbon, but cannot take full advantage increasing CO2 levels. Due to land use history, many forests are deficient in soil nutrition, but forest management -- including fertilizing with nitrogen -- can greatly increase growth rate and wood growth responses to elevated atmospheric CO2."

The studies took place at a Free Air Carbon Enrichment (FACE) study established by the U.S. Department of Energy on the Duke Forest in Durham, NC. In FACE studies, groups of trees are circled by rings of towers that provide CO2 to increase atmospheric concentrations of the gas around the selected trees. At the Duke FACE experiment, half of each ring was fertilized with nitrogen to study the effect of added soil nutrients on tree growth under elevated CO2.

The researchers further tested their hypotheses using data from FACE sites in Wisconsin, Colorado, and Italy. In the articles, the scientists identify critical areas needing further study, but the overall consistency they found across these diverse forests bodes well for developing accurate models to predict the ability of the world's forests to sequester carbon.

"Forests play a critical part in sequestering carbon, and may play a role in mitigating the elevated levels of carbon dioxide associated with climate change," says Johnsen. "To predict how much forests can sequester, we need accurate ways to predict what happens to carbon within forest systems and how this partitioning is affected by environmental conditions."

Picture: Aerial view of free-air carbon dioxide enrichment (FACE) rings at Duke Forest, Durham, NC. Credit: Will Owens.


More information:
The two articles can be accessed online at PNAS and on the SRS website:
-Aboveground sink strength in forests controls the allocation of carbon below ground and its [CO2]-induced enhancement (or at the SRS website)
-Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools. (Or at the SRS website).


0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home