<body> -------------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive » Bioenergy_technology
Nature Blog Network


    Spanish company Ferry Group is to invest €42/US$55.2 million in a project for the production of biomass fuel pellets in Bulgaria. The 3-year project consists of establishing plantations of paulownia trees near the city of Tran. Paulownia is a fast-growing tree used for the commercial production of fuel pellets. Dnevnik - Feb. 20, 2007.

    Hungary's BHD Hõerõmû Zrt. is to build a 35 billion Forint (€138/US$182 million) commercial biomass-fired power plant with a maximum output of 49.9 MW in Szerencs (northeast Hungary). Portfolio.hu - Feb. 20, 2007.

    Tonight at 9pm, BBC Two will be showing a program on geo-engineering techniques to 'save' the planet from global warming. Five of the world's top scientists propose five radical scientific inventions which could stop climate change dead in its tracks. The ideas include: a giant sunshade in space to filter out the sun's rays and help cool us down; forests of artificial trees that would breath in carbon dioxide and stop the green house effect and a fleet futuristic yachts that will shoot salt water into the clouds thickening them and cooling the planet. BBC News - Feb. 19, 2007.

    Archer Daniels Midland, the largest U.S. ethanol producer, is planning to open a biodiesel plant in Indonesia with Wilmar International Ltd. this year and a wholly owned biodiesel plant in Brazil before July, the Wall Street Journal reported on Thursday. The Brazil plant is expected to be the nation's largest, the paper said. Worldwide, the company projects a fourfold rise in biodiesel production over the next five years. ADM was not immediately available to comment. Reuters - Feb. 16, 2007.

    Finnish engineering firm Pöyry Oyj has been awarded contracts by San Carlos Bioenergy Inc. to provide services for the first bioethanol plant in the Philippines. The aggregate contract value is EUR 10 million. The plant is to be build in the Province of San Carlos on the north-eastern tip of Negros Island. The plant is expected to deliver 120,000 liters/day of bioethanol and 4 MW of excess power to the grid. Kauppalehti Online - Feb. 15, 2007.

    In order to reduce fuel costs, a Mukono-based flower farm which exports to Europe, is building its own biodiesel plant, based on using Jatropha curcas seeds. It estimates the fuel will cut production costs by up to 20%. New Vision (Kampala, Uganda) - Feb. 12, 2007.

    The Tokyo Metropolitan Government has decided to use 10% biodiesel in its fleet of public buses. The world's largest city is served by the Toei Bus System, which is used by some 570,000 people daily. Digital World Tokyo - Feb. 12, 2007.

    Fearing lack of electricity supply in South Africa and a price tag on CO2, WSP Group SA is investing in a biomass power plant that will replace coal in the Letaba Citrus juicing plant which is located in Tzaneen. Mining Weekly - Feb. 8, 2007.

    In what it calls an important addition to its global R&D capabilities, Archer Daniels Midland (ADM) is to build a new bioenergy research center in Hamburg, Germany. World Grain - Feb. 5, 2007.

    EthaBlog's Henrique Oliveira interviews leading Brazilian biofuels consultant Marcelo Coelho who offers insights into the (foreign) investment dynamics in the sector, the history of Brazilian ethanol and the relationship between oil price trends and biofuels. EthaBlog - Feb. 2, 2007.

    The government of Taiwan has announced its renewable energy target: 12% of all energy should come from renewables by 2020. The plan is expected to revitalise Taiwan's agricultural sector and to boost its nascent biomass industry. China Post - Feb. 2, 2007.

    Production at Cantarell, the world's second biggest oil field, declined by 500,000 barrels or 25% last year. This virtual collapse is unfolding much faster than projections from Mexico's state-run oil giant Petroleos Mexicanos. Wall Street Journal - Jan. 30, 2007.

    Dubai-based and AIM listed Teejori Ltd. has entered into an agreement to invest €6 million to acquire a 16.7% interest in Bekon, which developed two proprietary technologies enabling dry-fermentation of biomass. Both technologies allow it to design, establish and operate biogas plants in a highly efficient way. Dry-Fermentation offers significant advantages to the existing widely used wet fermentation process of converting biomass to biogas. Ame Info - Jan. 22, 2007.

    Hindustan Petroleum Corporation Limited is to build a biofuel production plant in the tribal belt of Banswara, Rajasthan, India. The petroleum company has acquired 20,000 hectares of low value land in the district, which it plans to commit to growing jatropha and other biofuel crops. The company's chairman said HPCL was also looking for similar wasteland in the state of Chhattisgarh. Zee News - Jan. 15, 2007.

    The Zimbabwean national police begins planting jatropha for a pilot project that must result in a daily production of 1000 liters of biodiesel. The Herald (Harare), Via AllAfrica - Jan. 12, 2007.

    In order to meet its Kyoto obligations and to cut dependence on oil, Japan has started importing biofuels from Brazil and elsewhere. And even though the country has limited local bioenergy potential, its Agriculture Ministry will begin a search for natural resources, including farm products and their residues, that can be used to make biofuels in Japan. To this end, studies will be conducted at 900 locations nationwide over a three-year period. The Japan Times - Jan. 12, 2007.

    Chrysler's chief economist Van Jolissaint has launched an arrogant attack on "quasi-hysterical Europeans" and their attitudes to global warming, calling the Stern Review 'dubious'. The remarks illustrate the yawning gap between opinions on climate change among Europeans and Americans, but they also strengthen the view that announcements by US car makers and legislators about the development of green vehicles are nothing more than window dressing. Today, the EU announced its comprehensive energy policy for the 21st century, with climate change at the center of it. BBC News - Jan. 10, 2007.

    The new Canadian government is investing $840,000 into BioMatera Inc. a biotech company that develops industrial biopolymers (such as PHA) that have wide-scale applications in the plastics, farmaceutical and cosmetics industries. Plant-based biopolymers such as PHA are biodegradable and renewable. Government of Canada - Jan. 9, 2007.


Creative Commons License


Wednesday, July 26, 2006

Fuel cells that work on biogas - bypassing the hydrogen paradox


The 'hydrogen economy' that was hyped so much a few years ago, is not coming off the ground. This is due to several factors, one of them being the problematic production, storage and distribution of hydrogen gas. The paradox of the hydrogen paradigm is that the fuel cells that form a main component of it, are highly efficient, whereas, on the contrary, the production of hydrogen itself is highly inefficient. These two counteracting forces paralyse the development of the industry.

But a new development may change that. The Institute für Keramische Technologien und Systeme (IKTS) at Europe's top science & tech research body, the Fraunhofer Institute, has developed high temperature ceramic fuel cells that can operate on biogas. Earlier, we reported about a European company's direct ethanol fuel cells which hold great promise as they form the missing link between the biofuels industry and the fuel cell industry. Now Frauenhofer strengthens that connection.

Biogas can be locally produced from all kinds of biomass waste in a fairly straightforward way. The technology is widespread and simple, the biomass resource base is very large, and biogas systems are highly scaleable. Moreover, the gas can be fed to the existing natural gas infrastructure for distribution. All this makes biogas a much better candidate than hydrogen when it comes to using fuel cells.

Alexander Michaelis, director the IKTS in Dresden predicts that “ceramic high-temperature fuel cells will soon be a mass market." They are ideal as mobile power generators for motor homes, boats, trucks or cars, as well as in stationary applications for generating electricity, heating and cooling. By developing cost-effective, long-lasting stacks, the heart of a high-temperature fuel cell, IKTS researchers have now created conditions for commercial applications. Stacks are made up of thin ceramic plates on the surface of which fuels are converted directly into electrical power through an electrochemical process. Compared with the polymers used in low-temperature fuel cells, these ceramic cells have one distinct advantage: apart from pure hydrogen, they can also generate power from methane, gasoline, diesel, natural gas or biogas:
:: :: :: :: :: :: :: :: ::

The process is fairly simple from an engineering viewpoint and therefore cost-effective. Efficiency of more than 90 percent can be achieved as part of a combined heat/cooling and power system – outperforming alternative technologies.

However, the stacks inside the fuel cell need to withstand major stresses with operating temperatures reaching up to 1 000 degrees Celsius. In effect, a high reducing atmosphere is created on the combustion gas side of the ceramic cells as a counterpoint to the high oxidizing atmosphere on the air side. Developing materials that can constantly withstand these kinds of aggressive conditions is a challenge for seasoned materials researchers. Together with industry partners H.C. Starck GmbH, a subsidiary of Bayer AG, and Webasto AG, a team at the IKTS is developing composite materials made out of metal, ceramics and glass. These materials are ideal for building low-cost, robust stacks – a service life of over 5,000 hours has already been achieved. The new stack design is due to go into series production shortly.

Prediction Made that High Temperature Ceramic Fuel Cells will become Mobile Power Generators - Azom.

The Fraunhofer IKTS, Dresden.


0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home