<body> -------------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive » Bioenergy_science
Nature Blog Network


    Spanish company Ferry Group is to invest €42/US$55.2 million in a project for the production of biomass fuel pellets in Bulgaria. The 3-year project consists of establishing plantations of paulownia trees near the city of Tran. Paulownia is a fast-growing tree used for the commercial production of fuel pellets. Dnevnik - Feb. 20, 2007.

    Hungary's BHD Hõerõmû Zrt. is to build a 35 billion Forint (€138/US$182 million) commercial biomass-fired power plant with a maximum output of 49.9 MW in Szerencs (northeast Hungary). Portfolio.hu - Feb. 20, 2007.

    Tonight at 9pm, BBC Two will be showing a program on geo-engineering techniques to 'save' the planet from global warming. Five of the world's top scientists propose five radical scientific inventions which could stop climate change dead in its tracks. The ideas include: a giant sunshade in space to filter out the sun's rays and help cool us down; forests of artificial trees that would breath in carbon dioxide and stop the green house effect and a fleet futuristic yachts that will shoot salt water into the clouds thickening them and cooling the planet. BBC News - Feb. 19, 2007.

    Archer Daniels Midland, the largest U.S. ethanol producer, is planning to open a biodiesel plant in Indonesia with Wilmar International Ltd. this year and a wholly owned biodiesel plant in Brazil before July, the Wall Street Journal reported on Thursday. The Brazil plant is expected to be the nation's largest, the paper said. Worldwide, the company projects a fourfold rise in biodiesel production over the next five years. ADM was not immediately available to comment. Reuters - Feb. 16, 2007.

    Finnish engineering firm Pöyry Oyj has been awarded contracts by San Carlos Bioenergy Inc. to provide services for the first bioethanol plant in the Philippines. The aggregate contract value is EUR 10 million. The plant is to be build in the Province of San Carlos on the north-eastern tip of Negros Island. The plant is expected to deliver 120,000 liters/day of bioethanol and 4 MW of excess power to the grid. Kauppalehti Online - Feb. 15, 2007.

    In order to reduce fuel costs, a Mukono-based flower farm which exports to Europe, is building its own biodiesel plant, based on using Jatropha curcas seeds. It estimates the fuel will cut production costs by up to 20%. New Vision (Kampala, Uganda) - Feb. 12, 2007.

    The Tokyo Metropolitan Government has decided to use 10% biodiesel in its fleet of public buses. The world's largest city is served by the Toei Bus System, which is used by some 570,000 people daily. Digital World Tokyo - Feb. 12, 2007.

    Fearing lack of electricity supply in South Africa and a price tag on CO2, WSP Group SA is investing in a biomass power plant that will replace coal in the Letaba Citrus juicing plant which is located in Tzaneen. Mining Weekly - Feb. 8, 2007.

    In what it calls an important addition to its global R&D capabilities, Archer Daniels Midland (ADM) is to build a new bioenergy research center in Hamburg, Germany. World Grain - Feb. 5, 2007.

    EthaBlog's Henrique Oliveira interviews leading Brazilian biofuels consultant Marcelo Coelho who offers insights into the (foreign) investment dynamics in the sector, the history of Brazilian ethanol and the relationship between oil price trends and biofuels. EthaBlog - Feb. 2, 2007.

    The government of Taiwan has announced its renewable energy target: 12% of all energy should come from renewables by 2020. The plan is expected to revitalise Taiwan's agricultural sector and to boost its nascent biomass industry. China Post - Feb. 2, 2007.

    Production at Cantarell, the world's second biggest oil field, declined by 500,000 barrels or 25% last year. This virtual collapse is unfolding much faster than projections from Mexico's state-run oil giant Petroleos Mexicanos. Wall Street Journal - Jan. 30, 2007.

    Dubai-based and AIM listed Teejori Ltd. has entered into an agreement to invest €6 million to acquire a 16.7% interest in Bekon, which developed two proprietary technologies enabling dry-fermentation of biomass. Both technologies allow it to design, establish and operate biogas plants in a highly efficient way. Dry-Fermentation offers significant advantages to the existing widely used wet fermentation process of converting biomass to biogas. Ame Info - Jan. 22, 2007.

    Hindustan Petroleum Corporation Limited is to build a biofuel production plant in the tribal belt of Banswara, Rajasthan, India. The petroleum company has acquired 20,000 hectares of low value land in the district, which it plans to commit to growing jatropha and other biofuel crops. The company's chairman said HPCL was also looking for similar wasteland in the state of Chhattisgarh. Zee News - Jan. 15, 2007.

    The Zimbabwean national police begins planting jatropha for a pilot project that must result in a daily production of 1000 liters of biodiesel. The Herald (Harare), Via AllAfrica - Jan. 12, 2007.

    In order to meet its Kyoto obligations and to cut dependence on oil, Japan has started importing biofuels from Brazil and elsewhere. And even though the country has limited local bioenergy potential, its Agriculture Ministry will begin a search for natural resources, including farm products and their residues, that can be used to make biofuels in Japan. To this end, studies will be conducted at 900 locations nationwide over a three-year period. The Japan Times - Jan. 12, 2007.

    Chrysler's chief economist Van Jolissaint has launched an arrogant attack on "quasi-hysterical Europeans" and their attitudes to global warming, calling the Stern Review 'dubious'. The remarks illustrate the yawning gap between opinions on climate change among Europeans and Americans, but they also strengthen the view that announcements by US car makers and legislators about the development of green vehicles are nothing more than window dressing. Today, the EU announced its comprehensive energy policy for the 21st century, with climate change at the center of it. BBC News - Jan. 10, 2007.

    The new Canadian government is investing $840,000 into BioMatera Inc. a biotech company that develops industrial biopolymers (such as PHA) that have wide-scale applications in the plastics, farmaceutical and cosmetics industries. Plant-based biopolymers such as PHA are biodegradable and renewable. Government of Canada - Jan. 9, 2007.


Creative Commons License


Tuesday, June 13, 2006

The broader view: biorefineries and biomaterials

Everything seems to be falling in line. Long ago, we wrote about the concept of integrated biorefineries, which will not only produce liquid biofuels, bioenergy products and biomaterials that ought to replace all petro-chemical rivals (from plastics to fertilizers), - but at the time it was a rather speculative and introductory text. Today, several sectors are colliding and finding themselves in the concept. Take nanotech: new avenues have recently been opened up by cellulose-based nanofibres, promising the establishment of an entirely new market for wood and raw biomass (which we at the BioPact want to be produced and exported by the developing world). So the biorefinery of the future has yet another product range to look at.


Cellulose under the microscope - high-tech molecularly
engineered materials can now be made from wood




Wood fibres turn up in a wide range of products. In addition to traditional paper and wood-based materials, they are also used for example in the food, textile and pharmaceutical industries. The scope of application of wood fibre could, however, be vastly broader than it is at present. With this objective in sight, new avenues are being opened up by cellulose-based nanofibres, which can be used to produce extremely strong and modifiable materials. These efforts are backed by growing pressures such as environmental requirements which lend ever stronger support to the demand for wider utilisation of new natural, fibre-based materials in future.

"Forest cluster companies operating in Finland are on the look out for new forest products. In order to be able to meet the challenges of these companies we need to improve the current level of know-how in wood-based products and wood processing at molecular level. New territory has been charted for example in the areas of composite and nanomaterials," says Professor Janne Laine of the Helsinki University of Technology's Department of Forest Products Technology.

Interest in cellulose-based nanofibres is primarily driven by its environmental value as a biomaterial. It is also known that nanomaterials can be used, for example, to achieve strength properties which are not attainable with particles of bigger size classes. Furthermore, the smaller the particle is, the bigger the surface area, which in turn increases the desired interactivity with other materials.

"One of the main application targets for new materials is the car industry, which wants to use lightweight cellulose fibres in car interior panelling. Estimates in terms of volume of the natural fibre requirement of the European car industry in 2010 are extremely substantial," says Laine.

Professor Laine's research team is one of five teams involved in examining and developing cellulose-based nanofibres as part of the Finnish-Swedish Wood Material Science and Engineering research programme.

According to Professor Janne Laine, the Nanostructured Cellulose Products research project has shown that wood fibre can be used to make an extremely versatile range of materials, both for traditional wood processing industry products as well as for totally new applications.

Cellulose fibres (30 micrometers wide, 2–3 millimetres long) consist of nanometre-scale microfibrils (4 nm wide, 100–200 nm long).

The chief objective of the project has been to produce uniform quality nanofibre (microfibrillated cellulose, MFC) from cellulose fibres by combining enzymatic or chemical treatment with mechanical processing. The second objective has been to attempt to functionalise the surfaces of the microfibrils, e.g. by means of polymers in order to be able to utilise the converted fibrils in as many materials as possible. The third objective has been to demonstrate how cellulose fibrils can give totally new properties to a range of different materials.

The project has achieved an 80 percent reduction in the energy requirement of microfibrillar cellulose manufacture as compared to levels formerly claimed in literature. In addition, enzymatic pre-treatment combined with specific mechanical treatments has produced microfibrils of extremely high and uniform quality.

"We've succeeded in modifying the surfaces of microfibrils e.g. by means of different polymers, which has, for instance, enabled us to make their surfaces more electrically charged. Microfibrils give considerable toughness and strength to traditional paper products even in small quantities. Correspondingly, microfibrils, as so-called nanocomposite structures, form an extremely high-strength material (e.g. film) the plasticity (elasticity) of which is possible to regulate for example by means of starch," says Laine.

"Cellulose microfibrils can also be used to make ultra-light materials. By combining fibrils with conductive polymers, we've been able to make cellulose based structures which conduct electricity. It's also been possible to coat microfibrils with a thin layer of titanium dioxide, which makes the material photocatalytically active. Titanium dioxide coated microfibrillar cellulose could be used, for instance, in solar cells and applications in which self-cleaning surfaces are needed, such as filters."

http://www.woodwisdom.fi/en/

0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home