The plan not only includes goals for each working group—which vary from collecting basic information on the disease to coordinating a nationwide monitoring effort—but also an emergency response protocol, which can be rolled out quickly in the event of an outbreak.

The protocol has a range of scenarios, from discovering a dead salamander in the wild with signs of infection to detecting the pathogen in a captive population. And for each, there’s an algorithm, a list of steps to contain the outbreak as quickly as possible.

Say someone finds a lethargic salamander covered in ulcers, for example, and reports it to a ranger. According to the protocol, the ranger should then follow a series of steps, starting with sending the salamander to one of 11 labs in North America that are equipped to test for the fungal disease. If the test comes back positive, the ranger should, among other steps, convene an emergency meeting to determine what actions to take.

And there aren’t many. The simplest approach would be to isolate the site of infection; restrict public access and fence in the area, for example. The official could also cover the pond or water body in netting to prevent birds from tracking spores to another pond.

Depending on the level of risk, scientists may also choose to take a more dramatic approach. If a small, shallow pond is bustling with Bsal and it’s home to endangered and susceptible salamanders, such as the black-spotted newt, scientists could consider dumping in fungicides. However, this method could result in serious collateral damage, according to Bletz.

“Most antifungals are pretty broad spectrum,” she says. “Even though they are potentially going to kill Bsal or other negative pathogens, they also have the potential to kill good fungi responsible for ecosystem processes within a pond.”

The rough-skinned newt (Taricha granulosa) lives on the West Coast of the U.S. and Canada and is a member of Salamandridae, which is a salamander family that scientists think is susceptible to Bsal. Rough-skinned newts are known for their ability to produce a toxin strong enough to kill an adult human. Photo by Todd W. Pierson.

It’s not just pouring fungicides into a pond that has consequences. Each action, whether it’s fencing off an area or bringing species into captivity, has a drawback. And that makes decision-making for local officials incredibly difficult—especially when there’s no time.

But members of the task force, many who are veterans from the battle against Bd, saw this coming. And so they created the decision support working group. Using simulations and models, the unit’s aim is to evaluate tradeoffs and risk for “optimal decision-making.” In other words, the group will help officials determine when drastic actions might be worth the drawbacks.

Once the course of action is clear, yet another group, management, is responsible for ensuring that there are no barriers to implementation, such as restrictions under the National Environmental Protection Act (NEPA).

“Suppose there’s an outbreak in a national park or a state forest and the animals are dying in a pond,” Harris says. “Even something as simple as putting up a fence to prevent the salamanders from traveling out would require a permit.”

And obtaining one can take months or even years.

Again taking advantage of foresight, Bletz and other researchers have been seeking “categorical exemptions” from NEPA, which would essentially grant certain actions known to slow the spread of Bsal pre-approval.

No such thing as ready

If all goes according to the strategic plan, wildlife officials will be able to make informed decisions quickly at the first sign of Bsal, slowing the fungus in its tracks. And the plan isn’t just applicable to the U.S. — Kerby says he’s coordinating with the Wildlife Health Unit of the Canadian Wildlife Service to tailor the plan to fit Canada’s needs, as well.

But here’s the bad news: no one knows how to stop it. As the plan clearly states, there’s no proven method for preventing Bsal from spreading, which is why many scientists and wildlife officials are concerned about a forthcoming invasion, even though they’ve had years to prepare.

“We feel as prepared as we can possibly be given the current state of our knowledge and the availability of control techniques,” John Jensen, a senior wildlife biologist at the Georgia Department of Natural Resources, told Mongabay. “Fungal diseases are very difficult to contain; if it arrives in the U.S. or is here already, I fear it will spread relatively unabated.”

Because plethodontid salamanders breathe through their skin, they tend to be small and they need to always be moist. Four-toed salamanders (Hemidactylium scutatum, juvenile pictured) rarely exceed 10 centimeters. Photo by Todd W. Pierson.

His belief is shared by other biologists working at the state and national level. Katie Richgels of the USGS told Mongabay in September that if Bsal gets here “it’s spreading, and we’re looking at catastrophic losses of a couple of species or more.”

What’s missing, many researchers acknowledge, is a silver bullet: a vaccine or a large-scale environmental treatment that doesn’t cause so much collateral damage. The longer they can keep Bsal at bay using existing actions, the more time they’ll have to find one.

A weapon in the works

A silver bullet may take many forms, yet all of them are likely to be infinitesimally small.

One of the most promising ideas for helping salamanders cope with the pathogen is using probiotics, or bacteria that naturally attack Bsal (much in the same way that bacteria in a human stomach combat their harmful brethren).

As researchers are discovering, some salamanders are naturally immune to Bsal; put them in a pond with the frightening fungus and they walk out unscathed. These species are naturally producing probiotics on their skin, researchers believe, and perhaps that cocktail of beneficial bacteria can be replicated and passed on to the less fortunate, more susceptible species.

At the University of Massachusetts, Bletz is exploring another kind of probiotic bacteria—one that emits Bsal-prohibiting compounds into the air. It’s like a probiotic spray (but not the kind sold at Whole Foods).

It can “actually kill the pathogen without contact,” she says. “It’s not something that’s going to eliminate the pathogen, but we could create a situation where these VOCs [volatile organic compounds] reduce the infection enough that it’s not going to reach a lethal level.”

Researchers are also exploring the possibility of using some of the world’s puniest predators to control Bsal. Small, waterborne organisms, such as certain species of copepods, like to eat fungal spores, Bletz says. In fact, lab research on Bd has shown that the presence of these micro-predators can reduce the probability of infection.

“Manipulation of micropredator communities could serve as a feasible tactic to minimize infection risk,” researchers on the task force write in the strategic plan.

The spring salamander (Gyrinophilus porphyriticus) is found in the eastern U.S. and Canada. It’s known for its tendency to have a long aquatic larval stage – up to five years. Photo by Todd W. Pierson.

Then finally, there’s talk of developing a vaccine.

“We’re trying to use the technical advances in other fields like human medicine,” Bletz says. “If we can figure out what protein from Bsal is actually associated with virulence—the reason it’s so effective at invading amphibian skin—we might be able to” develop an immune response for the hosts .

Preliminary research is promising, and it continues to race ahead. But it’s just that—preliminary. Until there’s a cure or an effective treatment that yields field-tested results, the outlook for salamanders remains unknown, if not somewhat bleak.

Whenever the pathogen arrives—whether or not a silver bullet has been found—it will be a test of how ready scientists are, Harris says, of how effective the planning process has been.

“I feel like we’ve done as best as we can with the knowledge we have,” Kerby says. “We’ve thought about a lot of scenarios and we’re equipped to deal with them effectively.

“But on the other hand we don’t know.”

 

 

Banner image: A cave salamander (Eurycea lucifuga). Photo by Todd W. Pierson.

Feedback: Use this form to send a message to the editor of this post. If you want to post a public comment, you can do that at the bottom of the page.

Article published by Morgan Erickson-Davis
, , , , , , , , , , , , , , ,