Site icon Conservation news

Could El Niño and climate change spell the end for tropical forests?

  • NASA’s Orbiting Carbon Observatory-2 (OCO-2) allowed scientists to study the response of the world’s tropical rainforests to the 2015-16 El Niño in more detail than every before, potentially providing insight into the longer-term response of tropical forests to escalating climate change.
  • During the El Niño, OCO-2 recorded a sudden global surge in CO2 emissions (above 400 ppm for a full year, the highest in modern history), an effect significantly enhanced by tropical forest emissions in South America, Africa, and Southeast Asia – all responded to the El Niño by temporarily shifting from carbon sink to carbon source.
  • However, each region responded differently: El Niño brought extreme drought to South America, and trees there stopped absorbing CO2. In Southeast Asia, major forest fires raged in extremely dry conditions, quickly releasing stored carbon. In Africa, rainfall was normal, but high temperatures drove increased ecosystem respiration.
  • Scientists worry that a tipping point could be reached where tropical forests collapse, but more study is needed. Given the great uncertainties as to how tropical forests will respond to a warming world, taking action now to keep forests standing and healthy may offer the single best hope for mitigating negative impacts, say researchers.
Rainforest in Sabah, Malaysian Borneo. Rainforests across the tropics play a crucial role in the global carbon cycle, and their response to the 2015-16 El Niño may give an insight into their longer-term response to climate change. Image © Kate Brady on Flickr, under a CC BY-NC-SA 2.0 license.

In summer 2014, governments across tropical Asia readied for a looming weather and political emergency – potential droughts, crop failures, and food shortages that could stress developing world nations and challenge their ability to respond. According to weather observatories, the chance of an El Niño event occurring before the year’s end was high. The central and eastern equatorial Pacific Ocean was warming up, a predictive precursor of El Niño, a temporary increase in global temperature that at its worst can generate a worldwide cascade of catastrophic changes to weather patterns.

It was a false alarm. But the following year El Niño materialized with a vengeance. Boosted by the earlier warmth in the Pacific, the 2015-16 El Niño turned out to be one of the strongest events on record. Intense droughts affected almost 40 million people in southern Africa; flooding swept South American countries, displacing 150,000 people; and coral reefs experienced the most significant bleaching event scientists have ever seen, with nearly all corals in some parts of the Great Barrier Reef dying due to the high temperatures.

In space, a new NASA satellite, launched on 2 July 2014, allowed scientists to study the El Niño’s rise and fall, and its effects on the global carbon cycle in greater detail than ever before. The Orbiting Carbon Observatory-2 (OCO-2) was equipped with sensitive instruments able to measure atmospheric CO2 concentrations ten times more accurately than previous methods.

A United Launch Alliance Delta II rocket sends the Orbiting Carbon Observatory-2 (OCO-2) satellite into orbit in July 2014. OCO-2 was launched just in time to be in position to record the 2015-16 El Niño’s effect on the global carbon cycle, and especially on tropical forests. Image courtesy of NASA/Bill Ingalls.

Overall, the 2015-16 El Niño led to the fastest rise in atmospheric CO2 on record, and helped push CO2 concentrations above 400 ppm for a full year for the first time in modern history. The OCO-2 findings went deeper. They revealed that the sudden surge in CO2 was greatly enhanced by emissions coming from the tropical forests of South America, Africa, and Southeast Asia – all responding to the El Niño by temporarily shifting from carbon sink to source. However, there were striking regional differences in each forest’s response.

Because El Niño conditions, with their elevated temperatures, may reflect what tropical climates will look like in the future as climate change escalates, such events “represent a massive experiment where we can get a glimpse of how these ecosystems” might respond, said Anders Ahlström, a scientist at Stanford Woods Institute for the Environment.

And with tropical forests storing almost 250 billion tons of carbon, their fate has major implications for the earth’s atmosphere – and life on earth.

“[T]his research shows that [El Niño] is truly a global phenomenon, impacting all the world’s tropical regions and beyond,” said William Laurance, of James Cook University, Australia, and a Mongabay board member. The “region-specific effects on forests and ecosystems” were intriguing, he said, “reflecting nuances of the global climate that we hadn’t appreciated previously.”

Artist’s rendering of the Orbiting Carbon Observatory-2 (OCO-2) satellite, which measures atmospheric CO2 concentrations far more accurately than previous methods. It provided a detailed account of carbon releases from African, South American and Southeast Asian rainforests during the most recent El Niño event. Image courtesy of NASA/JPL-Caltech.

A glimpse of our climate change future

OCO-2 continues to record 100,000 to 200,000 measurements a day as it orbits the earth, documenting CO2 concentrations in regions where terrestrial measurement stations are few and far between. As such, it allows for the pinpointing of carbon sources and sinks in places like the Congo, Amazon and Indonesian rainforests.

Using this data to make large-scale inferences about the global carbon cycle was hailed as “an important milestone,” by Emanuel Gloor, of the University of Leeds. It gets “us closer to near-real-time monitoring of ecosystem function and carbon cycle dynamics,” said Trevor Keenan, of the University of California, Berkeley.

“Previously, limited data in the tropics greatly limited our ability to determine key processes, or even to pin down which regions of the tropics were responding most strongly,” to El Niño events, explained Junjie Liu of the Jet Propulsion Laboratory, California Institute of Technology, who led the research.

Carbon emissions and climate conditions in three tropical forest regions as revealed by the OCO-2 satellite. While all three regions went from being carbon sinks to being carbon sources temporarily during the El Niño, different mechanisms in each region were at work to cause the surge in release of carbon into the atmosphere. Image courtesy of NASA/JPL-Caltech.

Liu’s team found that during the 2015-16 El Niño, extreme drought meant trees stopped absorbing CO2 in South America. In Southeast Asia, forest fires raged in extremely dry conditions, quickly releasing stored carbon. And in tropical Africa, high temperatures resulted in increased ecosystem respiration.

Together, the three regions emitted 2.5 gigatons more carbon during the 2015-16 El Niño than during the opposing phase of the cycle, known as La Niña, in 2011, with emissions split roughly evenly between the three forest regions. That’s comparable to “about a third of all the emissions from fossil fuel burning,” commented OCO-2 science team member Scott Denning when the research was published – but it wasn’t the scale of the emissions that surprised Liu.

“I was more surprised by the complexity of the Earth’s carbon-climate system,” she said.

The 2015-16 El Niño brought record-breaking temperatures and the third major drought in a decade to the Amazon, affecting an area 20 percent greater than ever previously observed. Image © Hudsӧn on Flickr under a CC BY-NC 2.0 license.

Worsening Amazon drought and tree death

The 2015-16 El Niño brought record-breaking temperatures and the third major drought in a decade to the Amazon, affecting an area 20 percent greater than ever previously observed.

At first, drought causes trees to absorb less CO2 as they slow their photosynthesis rate, or stop photosynthesizing completely, to conserve water. But if conditions become extremely dry, hydraulic failure may occur: air bubbles form in the trees’ xylem – the channels that carry water from the roots to the canopy, resulting in tree death.

“Once a tree dies it will slowly decompose, releasing all the carbon it had stored in its leaves, stems and roots back up to the atmosphere,” explained Lucy Rowland, of the University of Exeter.

Many species of tree are already near their limit of drought tolerance due to climate change, according to a 2012 study. Even a small shift to drier conditions could lead to hydraulic failure for 70 percent of 226 forest species, the research found. “[R]apid forest collapse as a result of drought could convert the world’s tropical forests from [CO2] sink to source during this century,” the scientists reported.

Climate models predict that Amazon droughts will become more common in the future, said Juan Carlos Jiménez-Muñoz, of the University of Valencia, which could result in an intensifying positive feedback loop. “In simple terms, more warming [leads to] more severe droughts, and maybe [to] more extreme El Niño events, which in turn leads to more severe droughts linked to El Niño conditions.”

A Brazil nut tree in the Peruvian Amazon. Drought first leads trees to slow their rate of photosynthesis to conserve water, which reduces their rate of CO2 uptake. But extreme drought can lead to hydraulic failure, whereby air bubbles form within the trees’ water channels, causing death. The dead trees then release their stored carbon into the atmosphere as they decompose. Image by Rhett A. Butler / Mongabay.

Paulo Brando, of the Woods Hole Research Center in Massachusetts, U.S., said that some resilience to droughts is to be expected, because the Amazon rainforest “has adapted to periodic droughts over millions of years.” But when multiple droughts hit in quick succession – as seen in 2005 and 2010, and again with the intense 2015-16 event – there is limited time for recovery, Jiménez-Muñoz said. This reduces forest resilience, increasing the chances of degradation “with implications [for] carbon uptake.”

“A major ‘unknown’ is whether Amazon forests are resilient enough to cope with [the] intensification of drought regimes,” that’s predicted to accompany future climate and land use change, explained Brando. A better understanding of the recovery capacity of forests is needed in order to know “how much is too much” for Amazon forests, he said.

The Amazon also saw a peak in fire activity during the 2015-16 event, Brando added. “A major concern is that with mega-droughts becoming more common in the near future, fires could burn forested areas that are currently too moist to carry a fire.” Wildfires dump the stored carbon in trees all at once into the atmosphere.

Smoke rising from a forest fire in Indonesia. During the 2015-16 El Niño, forest fires swept through carbon-rich peat forests, releasing their store of carbon into the atmosphere, and creating a toxic haze that affected as many as 69 million people across the region. Image by Rhett A. Butler / Mongabay.

Southeast Asia: forests on fire

By late 2015, parts of Indonesia, Malaysia, Singapore and Thailand were without clear sight of the sun, as smoke clouded the sky. Indonesia’s forest fire crisis engulfed the region in a toxic haze which was later shown to have affected 69 million people; over 100,000 likely died as a result.

In total, 2.6 million hectares (more than 10,000 square miles) of land burned. At their peak, daily greenhouse gas emissions from the fires exceeded those of the USA, according to research by Guido van der Werf of the University of Amsterdam.

“What makes Indonesia special [compared with other tropical forest regions] is that a substantial part of the tropical forest is on peatland, and that the human factor is much more important,” van der Werf explained. “If you look at a map with forest loss over the past decades, there is hardly anything untouched.”

Peatlands are especially carbon-rich, accumulating organic material over thousands of years. Draining the peatlands “lowers the water table so the land can be worked on [for agriculture], but it also means the peat starts to decompose,” said van der Werf. “During an El Niño, dry conditions lead to even lower water tables which makes both the forests and peat vulnerable to fire, and humans take advantage of these drought conditions to burn the forests,” in order to clear more croplands, especially for oil palm production.

Peatland in Indonesia drained to prepare the land for agriculture. Peatlands accumulate their rich carbon stores over thousands of years, but begin to decompose once they lose their moisture. Carbon release is further accelerated due to fire, when “carbon goes out much faster than it went in,” explains Guido van der Werf of the University of Amsterdam. Image by Rhett A. Butler / Mongabay.

Fires frequently burn out of control, said David Gaveau of the Center for International Forestry Research (CIFOR), destroying larger areas of forest than originally intended. “Once the forest has burned, one would expect the forest to recover,” he said, but an increased risk of subsequent fires “leads many forests to cycles of repeated burns.”

“Such cycles have converted millions of hectares of old-growth and selectively logged forest to fire-prone low vegetation: scrublands and fern fields. Once the land has reached that state, it is nearly impossible for the forest to grow back,” he said.

“The drought-fire mechanism in peatland depends on the [level] of [the] groundwater table [in relation] to the surface, that maintains [the] water content of [the] upper peat layer,” explained Muh Taufik of Wageningen University.

If the groundwater level becomes depleted, this is known as hydrological drought. Taufik’s research has shown that in years of hydrological drought, fires burned ten times the area of forest as in non-drought years. Taufik also found that there has been a general drying trend in Borneo’s groundwater over the last century, making the forests ever more susceptible to fire.

Lan Qie, of Imperial College London, highlights a second major threat to Borneo’s forests: fragmentation. This is a “persistent and progressive threat,” said Qie, whose research has shown that forest fragment edges, adjacent to fields or oil palm plantations, are significant sources of carbon emissions because trees are more likely to die if they are near an edge.

A fragment needs to be larger than 300 hectares (about one square mile) in order for carbon uptake to outweigh carbon loss, Qie and colleagues reported.

A baby Sumatran rhino. With fewer than 100 individuals left in the wild, this Critically Endangered species is found in the biodiversity-rich tropical forests of Indonesia. Scientists are concerned about the stresses that future climate change will put on Southeast Asia’s rainforests and wildlife. Image by Rhett A. Butler / Mongabay.

But even where intact forests remain, extreme El Niño events can knock those forests off balance. Qie’s study also found that the 1997-98 El Niño, which was more pronounced in the region than the 2015-16 event, caused so much tree mortality due to drought that Borneo’s intact forests tipped from carbon sink to source.

The good news: these forests recovered quickly, suggesting that intact forests have a degree of resilience to even strong droughts, Qie said. Southeast Asia’s Dipterocarp forests have evolved “under a climate regime including El Niño-driven supra-annual droughts,” she added, with periodic, synchronized mass-seeding being an adaptation to these conditions. But, as has been seen in the Amazon, “it is possible that the resilience of the Borneo [carbon] sink may also be challenged in the future,” Qie concluded.

Again, it is a matter of “how much is too much,” but no one currently knows where the tipping point may be, beyond which climate stressed tropical forests won’t be able to recover.

A baby lowland gorilla in the rainforests of Central Africa. The recent confirmation of the world’s largest tropical peatland in the Congo basin means Africa’s rainforests play an even larger role in the global carbon cycle than scientists realized at the time of the OCO-2 launch. Image by Rhett A. Butler / Mongabay.

Congo discovery

Until recently, Indonesia’s peatlands were thought to be the largest tropical peatlands in the world. But in January 2017, scientists published confirmation of a discovery: peat forests in the Congo basin covering 145,500 square kilometers (56,177 square miles) knocked Indonesia’s peatlands into second place.

With the Congo peatlands containing 30 billion tons of carbon, the future of tropical African forests is even more critical for the global carbon cycle than scientists realized at the time of the OCO-2 launch in 2014.

The OCO-2 research revealed that tropical African forests did not dry out during the 2015-16 El Niño event: instead, rainfall levels remained normal. But temperatures did rise, driving increased ecosystem respiration, which resulted in heightened CO2 emissions.

However, with on-the-ground weather data so limited across tropical Africa, the OCO-2 scientists reported that it was “challenging to verify” the link between temperature and carbon emissions that their remote-sensing data and models identified

This lack of data is also a hindrance when looking ahead. “[T]here are still many uncertainties as to how the climate will change across Central Africa in response to increased greenhouse gas emission,” said Greta Dargie, who led the Congo peatland research, and there is “little consensus amongst the climate models for projections of precipitation patterns across the region.”

The Congo peatlands “appear to be strongly dependent on rainfall for the maintenance of their water tables,” said Dargie, of the University of St. Andrews. A reduction in rainfall, or an increase in evapotranspiration – the movement of water from the soil, up through a tree’s trunk and leaves, into the atmosphere – which could occur if temperatures increase, “could lead to the peatlands becoming drier and therefore result in an increase in carbon dioxide emissions,” she said. But more research is needed to fully understand these mechanisms.

Near the city of Palangkaraya, Borneo, invasive fire-tolerant scrub and ferns have replaced forest, after repeated wildfires occurred in the region since the 1997 El Niño. In the Amazon, intensifying climate change, deforestation and wildfires could push the region past a rainfall tipping point, with large portions of the rainforest converted to savanna, according to researchers. Image © David Gaveau.

Future feedbacks: could tropical forests collapse?

What can these diverse responses to El Niño tell us about the climate future of tropical forests?

“Predicting the exact responses of tropical forests to climate change is tricky,” said Rowland. “We know they are likely to suffer as a result of rising temperatures and increasing droughts, but […] some of this damage may be partially off-set by increasing CO2 concentrations which will allow them to photosynthesise more.”

However, even without knowing how big the effect will be, “the response of tropical forests to climate change will almost certainly be negative,” Rowland concluded.

If climate change mirrors El Niño conditions “it may result in more carbon dioxide released from tropical forests, and more carbon dioxide remaining in the atmosphere, further warming our planet,” said Liu. A warmer planet could see more frequent extreme El Niño events, resulting in further detrimental interactions between cyclical El Niños, tropical forests, carbon emissions and worsening climate change.

The emissions from El Niño events also have a long-term cumulative effect: “global [atmospheric] CO2 levels have permanently ratchet[ed] up a notch [as a result of] the strong 2015-2016 El Niño event,” Liu explained.

But the magnitude of the most recent El Niño’s carbon emissions may be smaller than one might expect, considering the event’s near record intensity, said Gloor, which is some good news for forest resilience. “Interestingly, and maybe surprisingly, the global atmospheric concentration record does not show any signs that carbon release during the 2015/16 El Niño was anomalously large compared to other El Niño [events] in the past,” once fossil fuel emissions are taken into account, he said.

“Thus, so far, tropical forests seem to be able to cope with the steadily increasing temperatures, even when further enhanced during El Niño phases,” he concluded. However, “the very rapid increase in temperatures is unprecedented. My guess is that if [peak dry season] temperatures move towards 45-50 degrees [Celsius, 113-122 degrees Fahrenheit] then forests may not be able to cope.”

If tropical forests cannot cope, then this globally important carbon store and sink could be at stake.

The possibility of a looming tipping point — when the world’s tropical forests cease to act as a sink, and become a permanent source of carbon — is an active area of research. “Some models project tropical forests will change from a sink to a source for carbon later in this century,” said Keenan, although “there is large disagreement between model projections.”

“[O]ur satellite record isn’t long enough yet to distinguish between” those varying model predictions, Liu explained. To get a better handle on if and when tipping points may occur, “we need a longer data record that [is] sensitive to changes of tropical forest carbon fluxes, such as [that provided by] OCO-2 type satellites, as well as field studies and experiments that can push tropical systems artificially into new conditions,” she said.

An edge of an Amazon forest fragment in Brazil. Forest fragmentation and deforestation may ultimately prove to be more critical to the future of tropical forests than climate change, according to some scientists. “Negative synergies” between deforestation, climate change and forest fires point to a tipping point for the Amazon to “flip to a non-forest ecosystem” at 20-25 percent deforestation, according to tropical biologist Tom Lovejoy and climate scientist Carlos Nobre. Image by Rhett A, Butler / Mongabay.

Human activity key

Irrespective of the timing of any climate-induced tipping point, human activity changing the face of the world’s tropical forests may ultimately prove to be more critical.

“Currently the biggest threat to tropical forests remains, in my opinion, sadly, still human destruction,” said Gloor.

Taking the impact of deforestation and degradation into account, tropical forest regions are already making a substantial contribution to annual anthropogenic greenhouse gas emissions. A recent study concluded that, overall, all tropical forest regions are net carbon sources already.

“[G]iven that both fires and peat oxidation are so substantial, it is unlikely that the Indonesian forests as a whole are sinks,” concluded van der Werf. In a drained peatland, “carbon goes out much faster than it went in.”

For the Amazon, Ahlström anticipates that three factors will determine whether the forest will be resilient in the long-term: “future changes in rainfall; the ecosystems’ ability to adapt to new, warmer and more extreme climates that have no present analogue; and deforestation.”

Tropical biologist Tom Lovejoy and climate scientist Carlos Nobre agree that deforestation may help spell the end of the Amazon rainforest. In a recent commentary piece, the two researchers argue that “negative synergies between deforestation, climate change, and widespread use of fire indicate a tipping point for the Amazon system to flip to non-forest ecosystems in eastern, southern and central Amazonia at 20-25 percent deforestation.” Lovejoy previously told Mongabay that he saw the major droughts since 2005 as the “first flickerings” of this process.

Given the large uncertainties surrounding how tropical forests will respond as the climate warms, taking action to keep forests standing and healthy may offer the single best hope for mitigating negative impacts. Annual greenhouse gas emissions could be reduced by up to 30 percent if tropical deforestation was halted, and forests were allowed to recover.

In the meantime, more research is needed “in order to understand the likely future trajectory of the tropical carbon sink” and “directly inform policy” said Keenan. Liu agrees to the need for more tropical data, coupled with the right tools “to piece those data [sets] together into a complete picture” and “improve our understanding of how the earth system works.”

Laurance concludes, “[c]learly, we still have a lot to learn about Earth’s climate, and how it affects life and ecosystems.” The big unknowns: are dangerous climate and deforestation tipping points approaching faster than we can understand and respond to them?

Citation:

Liu, J., Bowman, K. W., Schimel, D. S. et al. (2017) Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358: eaam5690

FEEDBACK: Use this form to send a message to the author of this post. If you want to post a public comment, you can do that at the bottom of the page

Sunset over the Sumatran rainforest. Modern human beings have demonstrated their capacity for negatively shaping the fate of tropical forests. But humankind still has an opportunity to positively affect these forests, while mitigating climate change impacts. Halting tropical deforestation would reduce annual greenhouse gas emissions by up to 30 percent, according to scientists. Image by Rhett A. Butler / Mongabay.
Exit mobile version