Site icon Conservation news

Natural ocean thermostat may protect some coral reefs

Natural ocean thermostat may protect some coral reefs

Natural ocean thermostat may protect some coral reefs
National Center for Atmospheric Research
February 7, 2008





Natural processes may prevent oceans from warming beyond a certain point, helping protect some coral reefs from the impacts of climate change, new research finds. The study provides evidence that an ocean “thermostat” may be helping regulate sea-surface temperatures in a biologically diverse region of the western Pacific.

The research will be published Saturday, 9 February in Geophysical Research Letters, a journal of the American Geophysical Union.

The research team, led by Joan Kleypas of the National Center for Atmospheric Research (NCAR), looks at the Western Pacific Warm Pool, a region northeast of Australia where naturally warm sea-surface temperatures have risen little in recent decades. As a result, the reefs in that region appear to have suffered relatively few episodes of coral bleaching, a phenomenon that has damaged reefs in other areas where temperature increases have been more pronounced.



Hurricanes can help coral reefs. A close call with a hurricane can be beneficial to a stressed coral reef, reports a study published in Proceedings of the National Academy of Sciences (PNAS). The new research shows that hurricanes, which can form when surface temperatures reach about 28 degrees C (about 82 degrees F), cool sea temperatures by stirring up colder waters from ocean depths. The action brings relief to coral “bleached” by warm waters. Bleaching refers to the expulsion of the symbiotic algae that enable corals to feed. Corals can recover from short-term bleaching, but prolonged bleaching — over a week — can cause irreversible damage and subsequent death.
Hurricanes may help cool climate. Tropical cyclones and hurricanes play an important role in the ocean circulation patterns that transport heat and maintain the climate of North America and Europe, report researchers from Purdue University.

The study lends support to a much-debated theory that a natural ocean thermostat prevents sea-surface temperatures from exceeding about 88 degrees Fahrenheit (31 degrees Celsius) in open oceans. If so, this thermostat would protect reefs that have evolved in naturally warm waters that will not warm much further, as opposed to reefs that live in slightly cooler waters that face more significant warming.

“Global warming is damaging many corals, but it appears to be bypassing certain reefs that support some of the greatest diversity of life on the planet,” Kleypas says. “In essence, reefs that are already in hot water may be more protected from warming than reefs that are not. This is some rare hopeful news for these important ecosystems.”

Coral reefs face a multitude of threats, including overfishing, coastal development, pollution, and changes to ocean chemistry caused by rising levels of carbon dioxide in the atmosphere. But global warming presents a particularly grave threat because unusually warm ocean temperatures can lead to episodes of coral bleaching, in which corals turn white after expelling the colorful microscopic algae that provide them with nutrition. Unless cooler temperatures return in a few days or weeks, allowing algae to grow again, bleached corals often collapse and die.

Bleaching can occur naturally, but it has become increasingly widespread in recent decades. This is largely because sea-surface temperatures in tropical waters where corals live have increased about 0.5-0.7 degrees Fahrenheit (0.3-0.4 degrees Celsius) over the last two to three decades, with temperatures occasionally spiking higher.

However, between 1980 and 2005, only four episodes of bleaching have been reported for reefs in the Western Pacific Warm Pool. This is a lower rate than any other reef region, even though the western Pacific reefs appear to be especially sensitive to temperature changes. Sea-surface temperatures in the warm pool naturally average about 85 degrees Fahrenheit (29 degrees Celsius), which is close to the proposed thermostat limit. They have warmed up by about half as much as in cooler areas of the oceans.

To study the correlation between temperatures and bleaching, Kleypas and her co- authors at NCAR and the Australian Institute of Marine Science (AIMS) analyze 1950-2006 sea-surface temperatures in tropical waters that are home to corals, relying on measurements taken by ships, buoys, and satellites. The scientists also study computer simulations of past and future sea-surface temperatures. They compare the actual and simulated temperatures to a database of coral bleaching reports, mostly taken from 1980 to 2005.

Researchers have speculated about several processes that could regulate ocean temperatures. As surface waters warm, more water evaporates, which can increase cloud cover and winds that cool the surface. In some areas, warming alters ocean currents in ways that bring in cooler waters. In addition, the very process of evaporation removes heat.

“This year, 2008, is the International Year of the Reef, and we need to go beyond the dire predictions for coral reefs and find ways to conserve them,” Kleypas says. “Warming waters are just one part of the picture, but they are an important part. As we evaluate how and where to protect reefs, we need to determine whether the ocean thermostat offers some protection against coral bleaching.”

Kleypas and her co-authors say more research needs to be conducted on the thermostat. In particular, scientists are uncertain whether global warming may alter it, raising the upper limit for sea-surface temperatures. Computer model simulations tend to capture the slow rate of warming in the western Pacific over the last few decades, but they show the warm pool heating rapidly in the future.

“Computer models of Earth’s climate show that sea-surface temperatures will rise substantially this century,” says NCAR scientist Gokhan Danabasoglu, a co-author of the study. “Unfortunately, these future simulations show the Western Pacific Warm Pool warming at a similar rate as the surrounding areas instead of being constrained by a thermostat. We don’t know if the models are simply not capturing the processes that cause the thermostat, or if global warming is happening so rapidly that it will overwhelm the thermostat.”


Exit mobile version