<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    Mongabay, a leading resource for news and perspectives on environmental and conservation issues related to the tropics, has launched Tropical Conservation Science - a new, open access academic e-journal. It will cover a wide variety of scientific and social studies on tropical ecosystems, their biodiversity and the threats posed to them. Tropical Conservation Science - March 8, 2008.

    At the 148th Meeting of the OPEC Conference, the oil exporting cartel decided to leave its production level unchanged, sending crude prices spiralling to new records (above $104). OPEC "observed that the market is well-supplied, with current commercial oil stocks standing above their five-year average. The Conference further noted, with concern, that the current price environment does not reflect market fundamentals, as crude oil prices are being strongly influenced by the weakness in the US dollar, rising inflation and significant flow of funds into the commodities market." OPEC - March 5, 2008.

    Kyushu University (Japan) is establishing what it says will be the world’s first graduate program in hydrogen energy technologies. The new master’s program for hydrogen engineering is to be offered at the university’s new Ito campus in Fukuoka Prefecture. Lectures will cover such topics as hydrogen energy and developing the fuel cells needed to convert hydrogen into heat or electricity. Of all the renewable pathways to produce hydrogen, bio-hydrogen based on the gasification of biomass is by far both the most efficient, cost-effective and cleanest. Fuel Cell Works - March 3, 2008.


    An entrepreneur in Ivory Coast has developed a project to establish a network of Miscanthus giganteus farms aimed at producing biomass for use in power generation. In a first phase, the goal is to grow the crop on 200 hectares, after which expansion will start. The project is in an advanced stage, but the entrepreneur still seeks partners and investors. The plantation is to be located in an agro-ecological zone qualified as highly suitable for the grass species. Contact us - March 3, 2008.

    A 7.1MW biomass power plant to be built on the Haiwaiian island of Kaua‘i has received approval from the local Planning Commission. The plant, owned and operated by Green Energy Hawaii, will use albizia trees, a hardy species that grows in poor soil on rainfall alone. The renewable power plant will meet 10 percent of the island's energy needs. Kauai World - February 27, 2008.


Creative Commons License


Thursday, September 18, 2008

Plants in forest emit aspirin-like chemical to signal stress; discovery could aid farmers as early warning system


Scientists have discovered that trees respond to stress by producing significant amounts of a chemical form of aspirin. The finding, by scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, opens up new avenues of research into the behavior of plants and their impacts on air quality, and also has the potential to give farmers an early warning signal about crops that are failing. Detecting chemical signals in the atmosphere would allow farmers to intervene faster, with fewer costly inputs, and prevent crop losses. Currently, farmers rely on visual inspection of crops to detect stresses and often they only see the problem when it is already too late.

Interestingly, the findings indicate that plants may communicate on an ecosystem-wide scale, by sending out chemical signals via the atmosphere.
Unlike humans, who are advised to take aspirin as a fever suppressant, plants have the ability to produce their own mix of aspirin-like chemicals, triggering the formation of proteins that boost their biochemical defenses and reduce injury. Our measurements show that significant amounts of the chemical can be detected in the atmosphere as plants respond to drought, unseasonable temperatures, or other stresses. - Thomas Karl, NCAR scientist, lead author
For years, scientists have known that plants in a laboratory may produce methyl salicylate, which is a chemical form of acetylsalicylic acid, or aspirin. But researchers had never before detected methyl salicylate in an ecosystem or verified that plants emit the chemical in significant quantities into the atmosphere.

The team of scientists reported its findings [*.pdf] last week in the open access journal Biogeosciences. The research was funded by the National Science Foundation (NSF), NCAR's sponsor.
Biosphere-atmosphere interactions are important to the understanding of the Earth system. This fortuitous discovery of methyl salicyclate in quantities not anticipated adds to an already important study. - Cliff Jacobs, program director in NSF's Division of Atmospheric Sciences
The discovery
Researchers had not previously thought to look for methyl salicylate in a forest, and the NCAR team found the chemical by accident. They set up specialized instruments last year in a walnut grove near Davis, California, to monitor plant emissions of certain volatile organic compounds (VOCs).

These hydrocarbon compounds are important because they can combine with industrial emissions to affect pollution, and they can also influence local climate.

When the NCAR scientists reviewed their measurements, they found to their surprise that the emissions of VOCs included methyl salicylate.

The levels of methyl salicylate emissions increased dramatically when the plants, which were already stressed by a local drought, experienced unseasonably cool nighttime temperatures followed by large daytime temperature increases.

Instruments mounted on towers about 100 feet above the ground measured up to 0.025 milligrams of methyl salicylate rising from each square foot of forest per hour.

Karl and his colleagues speculate that the methyl salicylate has two functions. One of these is to stimulate plants to begin a process known as systemic acquired resistance, which is analogous to an immune response in an animal:
:: :: :: :: :: :: :: :: :: :: :: ::

This helps a plant to both resist and recover from disease. The methyl salicylate also may be a mechanism whereby a stressed plant communicates to neighboring plants, warning them of the threat. Researchers in laboratories have demonstrated that a plant may build up its defenses if it is linked in some way to another plant that is emitting the chemical.

Now that the NCAR team has demonstrated that methyl salicylate can build up in the atmosphere above a stressed forest, scientists are speculating that plants may use the chemical to activate an ecosystem-wide immune response.
These findings show tangible proof that plant-to-plant communication occurs on the ecosystem level. It appears that plants have the ability to communicate through the atmosphere. - Alex Guenther, NCAR scientist, co-author
Implications for farmers
The discovery raises the possibility that farmers, forest managers, and others may eventually be able to start monitoring plants for early signs of a disease, an insect infestation, or other types of stress. At present, they often do not know if an ecosystem is unhealthy until there are visible indicators, such as dead leaves.
A chemical signal is a very sensitive way to detect plant stress, and it can be an order of magnitude more effective than using visual inspections. If you have a sensitive warning signal that you can measure in the air, you can take action much sooner, such as applying pesticides. The earlier you detect that something's going on, the more you can benefit in terms of using less pesticides and managing crops better. - Thomas Karl
The discovery also can help scientists resolve a central mystery about VOCs. For years, atmospheric chemists have speculated that there are more VOCs in the atmosphere than they have been able to find. Now it appears that some fraction of the missing VOCs may be methyl salicylate and other plant hormones.

This finding can help scientists better track the impact of VOCs on the behavior of clouds and the development of ground-level ozone, an important pollutant.

Picture
: NCAR researcher Alex Guenther studies a chemical form of aspirin produced by walnut trees in California. Credit: Carlye Calvin, UCAR.

References:
T. Karl, A. Guenther, A. Turnipseed, E. G. Patton, and K. Jardine, "Chemical sensing of plant stress at the ecosystem scale", Biogeosciences, 5, 1287-1294, 2008



0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home