<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    Austrian bioenergy group Cycleenergy acquired controlling interest in Greenpower Projektentwicklungs GmbH, expanding its biomass operational portfolio by 16 MW to a total of 22 MW. In the transaction Cycleenergy took over 51% of the company and thereby formed a joint venture with Porr Infrastruktur GmbH, a subsidiary of Austrian construction company Porr AG. Greenpower operates two wood chip CHP facilities in Upper and Lower Austria, each with an electric capacity of 2 MW. The plants have been in operation since the middle of last year and consume more than 30,000 tonnes of wood chips and are expected to generate over €5 million in additional revenue. Cycleenergy - February 6, 2007.

    The 2008 edition of Bioenergy World Europe will take place in Verona, Italy, from 7 to 10 February. Gathering a broad range of international exhibitors covering gaseous, liquid and solid bioenergy, the event aims to offer participants the possibility of developing their business through meetings with professionals, thematic study tours and an international forum focusing on market and regulatory issues, as well as industry expertise. Bioenergy World Europe - February 5, 2007.

    The World GTL Summit will take place between 12 – 14th May 2008 in London. Key topics to be discussed include: the true value of Gas-to-Liquids (GTL) projects, well-to-wheels analyses of the GTL value chain; construction, logistics and procurement challenges; the future for small-scale Fischer-Tropsch (FT) projects; Technology, economics, politics and logistics of Coal-to-Liquids (CTL); latest Biomass-to-Liquids (BTL) commercialisation initiatives. CWC Exhibitions - February 4, 2007.

    The 4th Annual Brussels Climate Change Conference is announced for 26 - 27 February 2008. This joint CEPS/Epsilon conference will explore the key issues for a post-Kyoto agreement on climate change. The conference focuses on EU and global issues relating to global warming, and in particular looks at the following issues: - Post-2012 after Bali and before the Hokkaido G8 summit; Progress of EU integrated energy and climate package, burden-sharing renewables and technology; EU Emissions Trading Review with a focus on investment; Transport Climatepolicy.eu - January 28, 2007.

    Japan's Marubeni Corp. plans to begin importing a bioethanol compound from Brazil for use in biogasoline sold by petroleum wholesalers in Japan. The trading firm will import ETBE, which is synthesized from petroleum products and ethanol derived from sugar cane. The compound will be purchased from Brazilian petrochemical company Companhia Petroquimica do Sul and in February, Marubeni will supply 6,500 kilolitres of the ETBE, worth around US$7 million, to a biogasoline group made up of petroleum wholesalers. Wholesalers have been introducing biofuels since last April by mixing 7 per cent ETBE into gasoline. Plans call for 840 million liters of ETBE to be procured annually from domestic and foreign suppliers by 2010. Trading Markets - January 24, 2007.

    Toyota Tsusho Corp., Ohta Oil Mill Co. and Toyota Chemical Engineering Co., say it and two other firms have jointly developed a technology to produce biodiesel fuel at lower cost. Biodiesel is made by blending methanol into plant-derived oil. The new technology requires smaller amounts of methanol and alkali catalysts than conventional technologies. In addition, the new technology makes water removal facilities unnecessary. JCN Network - January 22, 2007.

    Finland's Metso Paper and SWISS COMBI - W. Kunz dryTec A.G. have entered a licence agreement for the SWISS COMBI belt dryer KUVO, which allows biomass to be dried in a low temperature environment and at high capacity, both for pulp & paper and bioenergy applications. Kauppalehti - January 22, 2007.

    Record warm summers cause extreme ice melt in Greenland: an international team of scientists, led by Dr Edward Hanna at the University of Sheffield, has found that recent warm summers have caused the most extreme Greenland ice melting in 50 years. The new research provides further evidence of a key impact of global warming and helps scientists place recent satellite observations of Greenland´s shrinking ice mass in a longer-term climatic context. Findings are published in the 15 January 2008 issue of Journal of Climate. University of Sheffield - January 15, 2007.

    Japan's Tsukishima Kikai Co. and Marubeni Corp. have together clinched an order from Oenon Holdings Inc. for a plant that will make bioethanol from rice. The Oenon group will invest around 4.4 billion yen (US$40.17 million) in the project, half of which will be covered by a subsidy from the Ministry of Agriculture, Forestry and Fisheries. The plant will initially produce bioethanol from imported rice, with plans to use Hokkaido-grown rice in the future. It will produce 5 million liters per year starting in 2009, increasing output to 15m liters in 2011. The facility will be able to produce as much as 50,000 liters of bioethanol from 125 tons of rice each day. Trading Markets - January 11, 2007.

    PetroSun, Inc. announced today that its subsidiary, PetroSun BioFuels Refining, has entered into a JV to construct and operate a biodiesel refinery near Coolidge, Arizona. The feedstock for the refinery will be algal oil produced by PetroSun BioFuels at algae farms to be located in Arizona. The refinery will have a capacity of thirty million gallons and will produce 100% renewable biodiesel. PetroSun BioFuels will process the residual algae biomass into ethanol. MarketWire - January 10, 2007.

    BlueFire Ethanol Fuels Inc, which develops and operates carbohydrate-based transportation fuel production facilities, has secured capital liquidity for corporate overhead and continued project development in the value of US$15 million with Quercus, an environmentally focused trust. BlueFire Ethanol Fuels - January 09, 2007.

    Some $170 billion in new technology development projects, infrastructure equipment and construction, and biofuel refineries will result from the ethanol production standards contained the new U.S. Energy Bill, says BIO, the global Biotechnology Industry Organization. According to Brent Erickson, BIO's executive vice president "Such a new energy infrastructure has not occurred in more than 100 years. We are at the point where we were in the 1850s when kerosene was first distilled and began to replace whale oil. This technology will be coming so fast that what we say today won't be true in two years." Chemical & Engineering News - January 07, 2007.

    Scottish and Southern Energy plc, the UK's second largest power company, has completed the acquisition of Slough Heat and Power Ltd from SEGRO plc for a total cash consideration of £49.25m. The 101MW CHP plant is the UK’s largest dedicated biomass energy facility fueled by wood chips, biomass and waste paper. Part of the plant is contracted under the Non Fossil Fuel Obligation and part of it produces over 200GWH of output qualifying for Renewable Obligation Certificates (ROCs), which is equivalent to around 90MW of wind generation. Scottish & Southern Energy - January 2, 2007.

    PetroChina Co Ltd, the country's largest oil and gas producer, plans to invest 800 million yuan to build an ethanol plant in Nanchong, in the southwestern province of Sichuan, its parent China National Petroleum Corp said. The ethanol plant has a designed annual capacity of 100,000 tons. ABCMoneyNews - December 21, 2007.

    Mexico passed legislation to promote biofuels last week, offering unspecified support to farmers that grow crops for the production of any renewable fuel. Agriculture Minister Alberto Cardenas said Mexico could expand biodiesel faster than ethanol. More soon. Reuters - December 20, 2007.

    Oxford Catalysts has placed an order worth approximately €700,000 (US$1 million) with the German company Amtec for the purchase of two Spider16 high throughput screening reactors. The first will be used to speed up the development of catalysts for hydrodesulphurisation (HDS). The second will be used to further the development of catalysts for use in gas to liquid (GTL) and Fischer-Tropsch processes which can be applied to next generation biofuels. AlphaGalileo - December 18, 2007.

    According to the Instituto Brasileiro de Geografia e Estatística (IBGE), Brazil's production of sugarcane will increase from 514,1 million tonnes this season, to a record 561,8 million tonnes in the 2008/09 cyclus - an increase of 9.3%. New numbers are also out for the 2007 harvest in Brazil's main sugarcane growing region, the Central-South: a record 425 million tonnes compared to 372,7 million tonnes in 2006, or a 14% increase. The estimate was provided by Unica – the União da Indústria de Cana-de-Açúcar. Jornal Cana - December 16, 2007.

    The University of East Anglia and the UK Met Office's Hadley Centre have today released preliminary global temperature figures for 2007, which show the top 11 warmest years all occurring in the last 13 years. The provisional global figure for 2007 using data from January to November, currently places the year as the seventh warmest on records dating back to 1850. The announcement comes as the Secretary-General of the World Meteorological Organization (WMO), Michel Jarraud, speaks at the Conference of the Parties (COP) in Bali. Eurekalert - December 13, 2007.

    The Royal Society of Chemistry has announced it will launch a new journal in summer 2008, Energy & Environmental Science, which will distinctly address both energy and environmental issues. In recognition of the importance of research in this subject, and the need for knowledge transfer between scientists throughout the world, from launch the RSC will make issues of Energy & Environmental Science available free of charge to readers via its website, for the first 18 months of publication. This journal will highlight the important role that the chemical sciences have in solving the energy problems we are facing today. It will link all aspects of energy and the environment by publishing research relating to energy conversion and storage, alternative fuel technologies, and environmental science. AlphaGalileo - December 10, 2007.

    Dutch researcher Bas Bougie has developed a laser system to investigate soot development in diesel engines. Small soot particles are not retained by a soot filter but are, however, more harmful than larger soot particles. Therefore, soot development needs to be tackled at the source. Laser Induced Incandescence is a technique that reveals exactly where soot is generated and can be used by project partners to develop cleaner diesel engines. Terry Meyer, an Iowa State University assistant professor of mechanical engineering, is using similar laser technology to develop advanced sensors capable of screening the combustion behavior and soot characteristics specifically of biofuels. Eurekalert - December 7, 2007.

    Lithuania's first dedicated biofuel terminal has started operating in Klaipeda port. At the end of November 2007, the stevedoring company Vakaru krova (VK) started activities to manage transshipments. The infrastructure of the biodiesel complex allows for storage of up to 4000 cubic meters of products. During the first year, the terminal plans to transship about 70.000 tonnes of methyl ether, after that the capacities of the terminal would be increased. Investments to the project totaled €2.3 million. Agrimarket - December 5, 2007.

    New Holland supports the use of B100 biodiesel in all equipment with New Holland-manufactured diesel engines, including electronic injection engines with common rail technology. Overall, nearly 80 percent of the tractor and equipment manufacturer's New Holland-branded products with diesel engines are now available to operate on B100 biodiesel. Tractor and equipment maker John Deere meanwhile clarified its position for customers that want to use biodiesel blends up to B20. Grainnet - December 5, 2007.

    According to Wetlands International, an NGO, the Kyoto Protocol as it currently stands does not take into account possible emissions from palm oil grown on a particular type of land found in Indonesia and Malaysia, namely peatlands. Mongabay - December 5, 2007.

    Malaysia's oil & gas giant Petronas considers entering the biofuels sector. Zamri Jusoh, senior manager of Petronas' petroleum development management unit told reporters "of course our focus is on oil and gas, but I think as we move into the future we cannot ignore the importance of biofuels." AFP - December 5, 2007.


Creative Commons License


Thursday, February 07, 2008

Researchers: hybrid vehicles slow transition to more sustainable cars

Hybrid electric vehicles that run on both conventional gasoline and stored electricity can be no more than a stop gap until more sustainable technology is developed, according to researchers in France. Writing in the Inderscience publication International Journal of Automotive Technology and Management, they suggest that the adoption of HEVs might even slow development of more sustainable fuel-cell powered electric vehicles that utilize (bio)hydrogen as their fuel.

No matter which type of vehicle might be most sustainable in the future - pure electric or hydrogen powered -, one thing is certain: in both cases biomass remains a very good candidate to generate the energy needed for transportation in an affordable, clean and efficient manner - be it H2 or electricity (see below). Biomass energy can even yield radical "negative emissions" when it is coupled to carbon capture and storage, and thus actively remove CO2 from the past from the atmosphere - something only biomass is capable of.

Jean-Jacques Chanaron, Research Director within the French National Centre for Scientific Research (CNRS) and Chief Scientific Advisor at the Grenoble School of Management and Julius Teske at Grenoble, question strongly whether the current acceptance of hybrid vehicle technology particularly in the USA is in any way environmentally sustainable.

The researchers have analyzed the spread of this technology including the non-financial drivers for its adoption. They point out that most manufacturers are rapidly integrating hybrid electric vehicles into their technology portfolio, despite the absence of significant profitability.

They add that the misinformed craze for hybrid vehicles especially in the USA, and increasingly in Japan and Europe, and potentially in China, could represent a red light for more innovative technologies, such as viable fuel-cell cars that can use sustainably sourced fuels, such as hydrogen. They concur with earlier studies that suggest that hydrogen fuel cells will not be marketable in high volumes before at least 2025. This could, however, be too late for some models of climate change and emissions reduction. They also point out that even fuel cell technology has its drawbacks and much of the marketing surrounding its potential has emerged only from the hydrogen lobby itself.
There is a general convergence of strategies towards promoting hybrid vehicles as the mid-term solution to very low-emission and high-mileage vehicles. This is largely due to Toyota's strategy of learning the technology, while building up its own "quasi-standard", thanks to its high-quality and reliability reputation and its high market share on the North American market. - Jean-Jacques Chanaron & Julius Teske
But they say that such a convergence is based more on customer perception triggered by very clever marketing and communication campaigns than on pure rational scientific arguments and may result in the need for any manufacturer operating in the USA to have a hybrid electric vehicle in its model range in order to survive.

Moreover, political pressures also play a significant part. The three major US manufacturers - GM, Ford, and Chrysler - recently urged President Bush to financially and politically support a national technological solution for hybrids; this was independent of the currently dominant solutions initiated by Toyota. The researchers concede that "the quest for low emission, clean, and high-mileage vehicles is on its way and should be at the top of the manufacturers' agenda". However, they suggest that the technology, marketing, and public perception leads to one overriding problem: is a hybrid strategy sustainable in the long run? Chanaron and Teske think not:

:: :: :: :: :: :: :: :: :: :: :: ::

The complexity and high cost of the hybrid technology is also playing against itself, they say: "There is a huge strategic dilemma for the key players of the automotive industry where a mistake in technology decision-making might turn even a big player into a take-over candidate. The next five years will provide industry observers with more accurate trends and success or failure factors."

Biopact notes that no matter which vehicle technology is most sustainable over the long run, bioenergy is in all cases the most economically viable, and in many cases the most environmentally friendly way to produce automotive energy.


When hydrogen is chosen as the fuel for fuel cell cars, the cleanest, most efficient and most affordable way to produce the gas is by converting biomass through gasification. This is the conclusion of a very large EU-funded well-to-wheel study of over 70 different propulsion technologies and energy pathways for the future. Of more than 30 different H2 production pathways - from electrolysis on the the basis of nuclear or wind power to steam reforming of natural gas - biohydrogen used in fuel cells and made from the gasification of biomass, is the cleanest and gives most mileage per amount of energy invested (previous post; graph, click to enlarge).


When pure electric cars are to be the future, then again bio-electricity is the clear winner amongst all sources of energy, over the medium to long term. According to the recent EU Strategic Energy Technology Plan, biomass based electricity is expected to become the cheapest form of electricity - even beating coal (previous post; table, click to enlarge).


Moreover, both biomass and biohydrogen production allow for the implementation of radical carbon-negative energy concepts. Bio-electricity and biohydrogen can be completely decarbonised by coupling their production to carbon capture and storage (CCS). When this is done, an energy carrier yielding "negative emissions" is obtained. Only fuels and energy carriers made from biomass can become carbon-negative, all other renewables remain fundamentally carbon positive.

The difference is staggering: over their lifecycle, renewables like wind or solar contribute between +30 and +100 gCO2eq per kWh of electricity. Bioenergy coupled to CCS yields up to -1000 gCO2 per kWh (that is: minus, "negative" emissions).

The bizarre aspect of such radical forms of carbon-negative bioenergy is that the more you use of it (in this case in your electric or hydrogen car), the more CO2 you take out of the atmosphere. The more you drive, the more you save the planet (previous post). Clearly, when it comes to mitigating climate change, carbon-negative biomass based transportation energy is the way forward.

The only issue with biomass is the fact that it is such a versatile primary energy resource. It can be transformed into a large range of products - from bioproducts and green platform chemicals to liquid, gaseous or solid biofuels - and used in a variety of applications - from producing heat to acting as a carbon sink - that it remains to be seen which utilization pathway is most efficient. Transforming biomass into an energy carrier for future cars might not be the most optimal use, because other services and products might be more cost-effective, better at mitigating climate change, or more energy efficient.

References:
Jean-Jacques Chanaron and Julius Teske, "Hybrid vehicles: a temporary step", International Journal of Automotive Technology and Management, 2007 - Vol. 7, No.4 pp. 268 - 288, DOI: 10.1504/IJATM.2007.017061

Eurekalert: The trouble with hybrids - Hybrid electric vehicles not as green as they are painted - February 7, 2008.

Biopact: The strange world of carbon-negative bioenergy: the more you drive your car, the more you tackle climate change - October 29, 2007

Biopact: Commission presents European Strategic Energy Technology Plan: towards a low carbon future - November 23, 2007

Biopact: Hydrogen out, compressed biogas in - October 01, 2006




1 Comments:

Anonymous xoddam said...

This idea that hydrogen is necessarily a more environmentally-friendly energy carrier than some combination of liquid fuels, grid electricity and batteries is far from proven.

While, weight-for-weight in terms of energy storage, hydrogen outclasses all other combustible fuels and any battery technology, it has other significant disadvantages for automotive use. Its superior efficiency as against liquid fuels can *only* be realised through fuel-cell technology which is unlikely to become affordable on the scale of the mass-market automobile for some years; burning hydrogen in an internal combustion engine is no more efficient than using liquid fuel with the same technology.

The adoption of battery-electric and hybrid internal-combustion + battery-electric vehicles, on the other hand, drives mass-production and adoption of electric power-trains and efficient automotive battery technology, both of which are prerequisites for fuel-cell vehicles to achieve maximum efficiency.

Plug-in hybrids, becoming available very soon, will dramatically reduce their users' reliance on liquid fuels and internal combustion engines. They will also prove the viability of pure battery-electric vehicles, which is nowadays still dubious in many consumers' minds.

Battery-electric vehicles, without either a fuel cell or an internal-combustion engine (and therefore without any kind of fuel tank) are as mechanically simple as a car design can get, and offer the very best opportunities for light-weight and efficient personal powered vehicles.

In evolutionary terms, hybrid and plug-in-hybrids are a big step away from dependence on liquid fuels.

Hydrogen energy storage is an efficiency bonus and an optional extra, for when the technology is widely and cheaply available. Until then the combination of grid electricity and liquid fuels will continue to drive the world for many years to come.

4:21 AM  

Post a Comment

Links to this post:

Create a Link

<< Home