<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    According to the Instituto Brasileiro de Geografia e Estatística (IBGE), Brazil's production of sugarcane will increase from 514,1 million tonnes this season, to a record 561,8 million tonnes in the 2008/09 cyclus - an increase of 9.3%. New numbers are also out for the 2007 harvest in Brazil's main sugarcane growing region, the Central-South: a record 425 million tonnes compared to 372,7 million tonnes in 2006, or a 14% increase. The estimate was provided by Unica – the União da Indústria de Cana-de-Açúcar. Jornal Cana - December 16, 2007.

    The University of East Anglia and the UK Met Office's Hadley Centre have today released preliminary global temperature figures for 2007, which show the top 11 warmest years all occurring in the last 13 years. The provisional global figure for 2007 using data from January to November, currently places the year as the seventh warmest on records dating back to 1850. The announcement comes as the Secretary-General of the World Meteorological Organization (WMO), Michel Jarraud, speaks at the Conference of the Parties (COP) in Bali. Eurekalert - December 13, 2007.

    The Royal Society of Chemistry has announced it will launch a new journal in summer 2008, Energy & Environmental Science, which will distinctly address both energy and environmental issues. In recognition of the importance of research in this subject, and the need for knowledge transfer between scientists throughout the world, from launch the RSC will make issues of Energy & Environmental Science available free of charge to readers via its website, for the first 18 months of publication. This journal will highlight the important role that the chemical sciences have in solving the energy problems we are facing today. It will link all aspects of energy and the environment by publishing research relating to energy conversion and storage, alternative fuel technologies, and environmental science. AlphaGalileo - December 10, 2007.

    Dutch researcher Bas Bougie has developed a laser system to investigate soot development in diesel engines. Small soot particles are not retained by a soot filter but are, however, more harmful than larger soot particles. Therefore, soot development needs to be tackled at the source. Laser Induced Incandescence is a technique that reveals exactly where soot is generated and can be used by project partners to develop cleaner diesel engines. Terry Meyer, an Iowa State University assistant professor of mechanical engineering, is using similar laser technology to develop advanced sensors capable of screening the combustion behavior and soot characteristics specifically of biofuels. Eurekalert - December 7, 2007.

    Lithuania's first dedicated biofuel terminal has started operating in Klaipeda port. At the end of November 2007, the stevedoring company Vakaru krova (VK) started activities to manage transshipments. The infrastructure of the biodiesel complex allows for storage of up to 4000 cubic meters of products. During the first year, the terminal plans to transship about 70.000 tonnes of methyl ether, after that the capacities of the terminal would be increased. Investments to the project totaled €2.3 million. Agrimarket - December 5, 2007.

    New Holland supports the use of B100 biodiesel in all equipment with New Holland-manufactured diesel engines, including electronic injection engines with common rail technology. Overall, nearly 80 percent of the tractor and equipment manufacturer's New Holland-branded products with diesel engines are now available to operate on B100 biodiesel. Tractor and equipment maker John Deere meanwhile clarified its position for customers that want to use biodiesel blends up to B20. Grainnet - December 5, 2007.

    According to Wetlands International, an NGO, the Kyoto Protocol as it currently stands does not take into account possible emissions from palm oil grown on a particular type of land found in Indonesia and Malaysia, namely peatlands. Mongabay - December 5, 2007.

    Malaysia's oil & gas giant Petronas considers entering the biofuels sector. Zamri Jusoh, senior manager of Petronas' petroleum development management unit told reporters "of course our focus is on oil and gas, but I think as we move into the future we cannot ignore the importance of biofuels." AFP - December 5, 2007.

    In just four months, the use of biodiesel in the transport sector has substantially improved air quality in Metro Manila, data from the Philippines Department of Environment and Natural Resources (DENR) showed. A blend of one percent coco-biodiesel is mandated by the Biofuels Act of 2007 which took effect last May. By 2009, it would be increased to two percent. Philippine Star - December 4, 2007.

    Kazakhstan will next year adopt laws to regulate its fledgling biofuel industry and plans to construct at least two more plants in the next 18 months to produce environmentally friendly fuel from crops, industry officials said. According to Akylbek Kurishbayev, vice-minister for agriculture, he Central Asian country has the potential to produce 300,000 tons a year of biodiesel and export half. Kazakhstan could also produce up to 1 billion liters of bioethanol, he said. "The potential is huge. If we use this potential wisely, we can become one of the world's top five producers of biofuels," Beisen Donenov, executive director of the Kazakhstan Biofuels Association, said on the sidelines of a grains forum. Reuters - November 30, 2007.

    SRI Consulting released a report on chemicals from biomass. The analysis highlights six major contributing sources of green and renewable chemicals: increasing production of biofuels will yield increasing amounts of biofuels by-products; partial decomposition of certain biomass fractions can yield organic chemicals or feedstocks for the manufacture of various chemicals; forestry has been and will continue to be a source of pine chemicals; evolving fermentation technology and new substrates will also produce an increasing number of chemicals. Chemical Online - November 27, 2007.

    German industrial conglomerate MAN AG plans to expand into renewable energies such as biofuels and solar power. Chief Executive Hakan Samuelsson said services unit Ferrostaal would lead the expansion. Reuters - November 24, 2007.

    Analysts think Vancouver-based Ballard Power Systems, which pumped hundreds of millions and decades of research into developing hydrogen fuel cells for cars, is going to sell its automotive division. Experts describe the development as "the death of the hydrogen highway". The problems with H2 fuel cell cars are manifold: hydrogen is a mere energy carrier and its production requires a primary energy input; production is expensive, as would be storage and distribution; finally, scaling fuel cells and storage tanks down to fit in cars remains a huge challenge. Meanwhile, critics have said that the primary energy for hydrogen can better be used for electricity and electric vehicles. On a well-to-wheel basis, the cleanest and most efficient way to produce hydrogen is via biomass, so the news is a set-back for the biohydrogen community. But then again, biomass can be used more efficiently as electricity for battery cars. Canada.com - November 21, 2007.

    South Korea plans to invest 20 billion won (€14.8/$21.8 million) by 2010 on securing technologies to develop synthetic fuels from biomass, coal and natural gas, as well as biobutanol. 29 private companies, research institutes and universities will join this first stage of the "next-generation clean energy development project" led by South Korea's Ministry of Commerce, Industry and Energy. Korea Times - November 19, 2007.

    OPEC leaders began a summit today with Venezuelan President Hugo Chavez issuing a chilling warning that crude prices could double to US$200 from their already-record level if the United States attacked Iran or Venezuela. He urged assembled leaders from the OPEC, meeting for only the third time in the cartel's 47-year history, to club together for geopolitical reasons. But the cartel is split between an 'anti-US' block including Venezuela, Iran, and soon to return ex-member Ecuador, and a 'neutral' group comprising most Gulf States. France24 - November 17, 2007.

    The article "Biofuels: What a Biopact between North and South could achieve" published in the scientific journal Energy Policy (Volume 35, Issue 7, 1 July 2007, Pages 3550-3570) ranks number 1 in the 'Top 25 hottest articles'. The article was written by professor John A. Mathews, Macquarie University (Sydney, Autralia), and presents a case for a win-win bioenergy relationship between the industrialised and the developing world. Mathews holds the Chair of Strategic Management at the university, and is a leading expert in the analysis of the evolution and emergence of disruptive technologies and their global strategic management. ScienceDirect - November 16, 2007.

Creative Commons License


Monday, December 17, 2007

Biomethane presented as most efficient biofuel at NAAC Conference

At the recent National Association of Agricultural Contractors (NAAC) Contractor 2007 Conference, in the UK, biofuels took center stage. Farmers were impressed by a presentation by Tim Evans, whose company – Renewable Zukunft - presented results from a 'Mini Test': a comparative trial of biofuels used in the Mini, to see how far each type of biofuel generated from 1 hectare of energy crops takes the car. Biomethane stood out as the clear winner.

Evans believes that the inevitable decline in fossil fuel availability and the concerns over energy security (90% of UK gasoline is imported) will see many types of renewable energy start to look a lot more viable. However he warned that farmers need to consider which areas of production they want to get involved with carefully.

UK farmers have a great opportunity to make themselves independent suppliers of energy. But they should avoid to fall back into the trap of becoming mere commodity producers, supplying a biofuel feedstock at whatever price the buyer offers. To do this Evans argues that farms need to keep control over the whole energy chain, right through from growing the raw material to pumping electricity into the National Grid.

He put forward a simple model as a measure of renewable fuel efficiency – the Mini Test, to show how far the little car will travel on a hectare’s worth of fuel (graph, click to enlarge).

Biodiesel fares worst taking a Mini just over 20,000km (5030 miles/acre). Bioethanol manages just over 30,000km/ha (7540 miles/acre). Then there is a marked jump to synthetic biodiesel, a next-generation biofuel produced from gasified biomass and converted to liquid fuel via the Fisher-Tropsch Process: it carries the Mini over 70,000km (13,960 miles/acre).

But biomethane, which is upgraded biogas made from anaerobically fermented crops, slurry or organic waste, tops the chart at nearly 97,000km/ha (24,390 miles/acre) almost five times as much as biodiesel. Compared to second-generation biofuels, such as cellulosic ethanol or biomass-to-liquids, biogas is a mature technology.

The comparison is interesting and confirms results from some earlier well-to-wheel studies (e.g. the Renewable Energy Centre recently released its assessment of responses to the King Review of Low Carbon Cars’ call for evidence and supports the Biomethane for Transport organisation which found that biogas is the cleanest and most efficient of all transport fuels). But merely pointing at the 'land use efficiency' of a fuel is not enough. The exercise needs to take into account many other questions, such as the lifecycle emissions, fuel production costs, scaling options, the need for adapted fuel distribution infrastructures and vehicle modifications:
:: :: :: :: :: :: :: :: ::

When these are taken into account, a different picture emerges, as was recently demonstrated in a comprehensive comprehensive EU WTW study on 70 different fuels and propulsion technologies, and in a smaller comparison of 7 biofuels made by Volvo (earlier post).

Notwithstanding these questions, Evans promotes the concept of on-farm biogas production for other reasons. He claims that by putting a 400 ha (1000acre) arable unit down to crops to feed a farm-scale biogas plant in 2006, farmers could have generated nearly £10,000 additional net profit by selling electricity.

And that figure could look a whole lot more rosy if government support is increased to raise renewable electricity values from £65/mW to over £100/mW, as is expected by 2009.

For an investment of at least £2million, a 1mW plant consuming 1000 acres worth of grass, maize and wholecrop silage, topped up with slurry and manure can generate a 20% return on capital, Evans claims.

Added to this is the nutritional benefit of the processed slurry as a fertiliser at the end of the production cycle.

Biogas is a rapidly growing sector in mainland Europe, with several countries (Sweden, Germany, Austria) utilizing the fuel for transport. When upgraded to natural gas quality, the fuel can be fed into the natural gas grid.

Some have found there to be a large potential for biogas in Europe, with the most optimistic estimates claiming the gas can replace all natural gas imports from Russia by 2020.

References:
Farmers Weekly: Biogas - the future for UK farms? - December15, 2007.

Biopact: Volvo releases comprehensive analysis of seven biofuels for use in carbon-neutral trucks - August 29, 2007

Biopact: Germany considers opening natural gas network to biogas - major boost to sector - August 11, 2007

Biopact: Study: Biogas can replace all EU imports of Russian gas by 2020 - February 10, 2007

Biopact: Study: EU biogas production grew 13.6% in 2006, holds large potential - July 24, 2007

Biopact: A quick look at natural gas and biogas hybrids - September 16, 2007

Biopact: Report: carbon-negative biomethane cleanest and most efficient biofuel for cars - August 29, 2007

3 Comments:

Blogger rufus said...

Any information on which crops are the highest producers?

4:41 PM  
Blogger Biopact team said...

Hi rufus, there are not that many studies on particular dedicated energy crops for biogas. But an interesting one, to which we sometimes refer, is:

Annimari Lehtomäki: Biogas production from energy crops and crop residues [*.pdf], Jyväskylä Studies in Biological and Environmental Sciences 163, PhD Dissertation, Faculty of Mathematics and Sciences, University of Jyväskylä, 2006.

This one looks at temperate grasses mainly.

In Europe, there's research into sorghum, special energy maize, sudan grass and other grass species for biogas.

We have also found a study about the conversion of sugarcane into biogas (instead of into ethanol + bioenergy) and it was found that biogas would yield more energy from the crop than ethanol. You would get 192.36 GJ per hectare (based on the average Brazilian cane yield for 2003). That's quite a lot of energy.

Check here:

Colen, F., Pasqual, A.,
"Sugar cane (Saccharum sp.) juice energetic potential as substrate in UASB reactor", Energia na Agricultura, 2003 (Vol. 18) (No. 4) 58-71

[You might have to push 'enter' twice to get at the abstract].

Of course, biogas is difficult to transport compared to ethanol. That's probably why it isn't being produced on a large scale in Brazil's interior, where the cane plantations are located.

But it does hold a good potential in many countries, especially in those that are already pushing CNG vehicles, such as India, Argentina or Pakistan. In several regions you can produce it easily for local use.

On the other hand, when produced on a large scale, first generation liquid biofuels are probably less costly than biomethane.

5:12 PM  
Blogger rufus said...

Thanks, guys. That's some pretty heavy reading. I imagine we're a few years away from this in the U.S; but, it's good to know it's available. We'll probably spend the next five or six years getting our ethanol deal lined out.

BTW, you asked me a few threads, ago, if I didn't have a few "mixed" feelings about the energy bill; The answer is "Heck No!" I consider it a Miracle that, in light of the Brilliant P.R., and Misinformation offensive by the Oil Companies, we were able to get "Anything" passed.

The Energy Bill will "Get us on our way." We'll get approval from the EPA for our E20, and, probably, E30 Blends (with which a lot of our cars get better mileage than with straight gasoline;) and the Auto companies will be forced to start looking at ways to "Optimize" Mileage with Ethanol, including E85.

Also, this bill will break the logjam of funding for a lot of "cellulosic" projects, and a couple of Cane projects in California, and elsewhere. In addition, as I stated earlier, this will be good for Brazilian Cane ethanol producers. As the market is expanded, significantly, it will become obvious that we can't meet it entirely with domestic cellulose production. We will import quite a lot from Brazil.

It, also, will cause the rest of the world to follow our successful lead in adapting to ethanol; and, that, also, will be good for the Southern Hemisphere Exporters. Believe me; Everyone won, here, except the oil companies; and, something tells me that They'll figure out a way to make a Buck, also. After all, Petrobras did.

Right? :)

9:04 PM  

Post a Comment

Links to this post:

Create a Link

<< Home