<body> --------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    The Colorado Wood Utilization and Marketing Program at Colorado State University received a $65,000 grant from the U.S. Forest Service to expand the use of woody biomass throughout Colorado. The purpose of the U.S. Department of Agriculture grant program is to provide financial assistance to state foresters to accelerate the adoption of woody biomass as an alternative energy source. Colorado State University - October 12, 2007.

    Indian company Naturol Bioenergy Limited announced that it will soon start production from its biodiesel facility at Kakinada, in the state of Andhra Pradesh. The facility has an annual production capacity of 100,000 tons of biodiesel and 10,000 tons of pharmaceutical grade glycerin. The primary feedstock is crude palm oil, but the facility was designed to accomodate a variety of vegetable oil feedstocks. Biofuel Review - October 11, 2007.

    Brazil's state energy company Petrobras says it will ship 9 million liters of ethanol to European clients next month in its first shipment via the northeastern port of Suape. Petrobras buys the biofuel from a pool of sugar cane processing plants in the state of Pernambuco, where the port is also located. Reuters - October 11, 2007.

    Dynamotive Energy Systems Corporation, a leader in biomass-to-biofuel technology, announces that it has completed a $10.5 million equity financing with Quercus Trust, an environmentally oriented fund, and several other private investors. Ardour Capital Inc. of New York served as financial advisor in the transaction. Business Wire - October 10, 2007.

    Cuban livestock farmers are buying distillers dried grains (DDG), the main byproduct of corn based ethanol, from biofuel producers in the U.S. During a trade mission of Iowan officials to Cuba, trade officials there said the communist state will double its purchases of the dried grains this year. DesMoines Register - October 9, 2007.

    Brasil Ecodiesel, the leading Brazilian biodiesel producer company, recorded an increase of 57.7% in sales in the third quarter of the current year, in comparison with the previous three months. Sales volume stood at 53,000 cubic metres from August until September, against 34,000 cubic metres of the biofuel between April and June. The company is also concluding negotiations to export between 1,000 to 2,000 tonnes of glycerine per month to the Asian market. ANBA - October 4, 2007.

    PolyOne Corporation, the US supplier of specialised polymer materials, has opened a new colour concentrates manufacturing plant in Kutno, Poland. Located in central Poland, the new plant will produce colour products in the first instance, although the company says the facility can be expanded to handle other products. In March, the Ohio-based firm launched a range of of liquid colourants for use in bioplastics in biodegradable applications. The concentrates are European food contact compliant and can be used in polylactic acid (PLA) or starch-based blends. Plastics & Rubber Weekly - October 2, 2007.

    A turbo-charged, spray-guided direct-injection engine running on pure ethanol (E100) can achieve very high specific output, and shows “significant potential for aggressive engine downsizing for a dedicated or dual-fuel solution”, according to engineers at Orbital Corporation. GreenCarCongress - October 2, 2007.

    UK-based NiTech Solutions receives £800,000 in private funding to commercialize a cost-saving industrial mixing system, dubbed the Continuous Oscillatory Baffled Reactor (COBR), which can lower costs by 50 per cent and reduce process time by as much as 90 per cent during the manufacture of a range of commodities including chemicals, drugs and biofuels. Scotsman - October 2, 2007.

    A group of Spanish investors is building a new bioethanol plant in the western region of Extremadura that should be producing fuel from maize in 2009. Alcoholes Biocarburantes de Extremadura (Albiex) has already started work on the site near Badajoz and expects to spend €42/$59 million on the plant in the next two years. It will produce 110 million litres a year of bioethanol and 87 million kg of grain byproduct that can be used for animal feed. Europapress - September 28, 2007.

    Portuguese fuel company Prio SA and UK based FCL Biofuels have joined forces to launch the Portuguese consumer biodiesel brand, PrioBio, in the UK. PrioBio is scheduled to be available in the UK from 1st November. By the end of this year (2007), says FCL Biofuel, the partnership’s two biodiesel refineries will have a total capacity of 200,000 tonnes which will is set to grow to 400,000 tonnes by the end of 2010. Biofuel Review - September 27, 2007.

    According to Tarja Halonen, the Finnish president, one third of the value of all of Finland's exports consists of environmentally friendly technologies. Finland has invested in climate and energy technologies, particularly in combined heat and power production from biomass, bioenergy and wind power, the president said at the UN secretary-general's high-level event on climate change. Newroom Finland - September 25, 2007.

    Spanish engineering and energy company Abengoa says it had suspended bioethanol production at the biggest of its three Spanish plants because it was unprofitable. It cited high grain prices and uncertainty about the national market for ethanol. Earlier this year, the plant, located in Salamanca, ceased production for similar reasons. To Biopact this is yet another indication that biofuel production in the EU/US does not make sense and must be relocated to the Global South, where the biofuel can be produced competitively and sustainably, without relying on food crops. Reuters - September 24, 2007.

    The Midlands Consortium, comprised of the universities of Birmingham, Loughborough and Nottingham, is chosen to host Britain's new Energy Technologies Institute, a £1 billion national organisation which will aim to develop cleaner energies. University of Nottingham - September 21, 2007.

    The EGGER group, one of the leading European manufacturers of chipboard, MDF and OSB boards has begun work on installing a 50MW biomass boiler for its production site in Rion. The new furnace will recycle 60,000 tonnes of offcuts to be used in the new combined heat and power (CHP) station as an ecological fuel. The facility will reduce consumption of natural gas by 75%. IHB Network - September 21, 2007.

    Analysts fear that record oil prices will fuel general inflation in Kenya, particularly hitting the poorest hard. They call for the development of new policies and strategies to cope with sustained high oil prices. Such policies include alternative fuels like biofuels, conservation measures, and more investments in oil and gas exploration. The poor in Kenya are hit hardest by the sharp increase, because they spend most of their budget on fuel and transport. Furthermore, in oil intensive economies like Kenya, high oil prices push up prices for food and most other basic goods. All Africa - September 20, 2007.

    Finland's Metso Power has won an order to supply Kalmar Energi Värme AB with a biomass-fired power boiler for the company’s new combined heat and power plant in Kalmar on the east coast of Sweden. Start-up for the plant is scheduled for the end of 2009. The value of the order is approximately EUR 55 million. The power boiler (90 MWth) will utilize bubbling fluidized bed technology and will burn biomass replacing old district heating boilers and reducing the consumption of oil. The delivery will also include a flue gas condensing system to increase plant's district heat production. Metso Corporation - September 19, 2007.

    Jo-Carroll Energy announced today its plan to build an 80 megawatt, biomass-fueled, renewable energy center in Illinois. The US$ 140 million plant will be fueled by various types of renewable biomass, such as clean waste wood, corn stover and switchgrass. Jo-Carroll Energy - September 18, 2007.

    Beihai Gofar Marine Biological Industry Co Ltd, in China's southern region of Guangxi, plans to build a 100,000 tonne-per-year fuel ethanol plant using cassava as feedstock. The Shanghai-listed company plans to raise about 560 million yuan ($74.5 million) in a share placement to finance the project and boost its cash flow. Reuters - September 18, 2007.

    The oil-dependent island state of Fiji has requested US company Avalor Capital, LLC, to invest in biodiesel and ethanol. The Fiji government has urged the company to move its $250million 'Fiji Biofuels Project' forward at the earliest possible date. Fiji Live - September 18, 2007.

    The Bowen Group, one of Ireland's biggest construction groups has announced a strategic move into the biomass energy sector. It is planning a €25 million investment over the next five years to fund up to 100 projects that will create electricity from biomass. Its ambition is to install up to 135 megawatts of biomass-fuelled heat from local forestry sources, which is equal to 50 million litres or about €25m worth of imported oil. Irish Examiner - September 16, 2007.

    According to Dr Niphon Poapongsakorn, dean of Economics at Thammasat University in Thailand, cassava-based ethanol is competitive when oil is above $40 per barrel. Thailand is the world's largest producer and exporter of cassava for industrial use. Bangkok Post - September 14, 2007.

    German biogas and biodiesel developer BKN BioKraftstoff Nord AG has generated gross proceeds totaling €5.5 million as part of its capital increase from authorized capital. Ad Hoc News - September 13, 2007.

    NewGen Technologies, Inc. announced that it and Titan Global Holdings, Inc. completed a definitive Biofuels Supply Agreement which will become effective upon Titan’s acquisition of Appalachian Oil Company. Given APPCO’s current distribution of over 225 million gallons of fuel products per year, the initial expected ethanol supply to APPCO should exceed 1 million gallons a month. Charlotte dBusinessNews - September 13, 2007.

    Oil prices reach record highs as the U.S. Energy Information Agency releases a report that showed crude oil inventories fell by more than seven million barrels last week. The rise comes despite a decision by the international oil cartel, OPEC, to raise its output quota by 500,000 barrels. Reuters - September 12, 2007.

    OPEC decided today to increase the volume of crude supplied to the market by Member Countries (excluding Angola and Iraq) by 500,000 b/d, effective 1 November 2007. The decision comes after oil reached near record-highs and after Saudi Aramco announced that last year's crude oil production declined by 1.7 percent, while exports declined by 3.1 percent. OPEC - September 11, 2007.

    GreenField Ethanol and Monsanto Canada launch the 'Gro-ethanol' program which invites Ontario's farmers to grow corn seed containing Monsanto traits, specifically for the ethanol market. The corn hybrids eligible for the program include Monsanto traits that produce higher yielding corn for ethanol production. MarketWire - September 11, 2007.


Creative Commons License


Saturday, October 13, 2007

U.S. National Science Foundation awards grants to seed plant systems biology - biofuel and bioeconomy-centered projects

The U.S. National Science Foundation (NSF) has made 26 new awards totaling $85.8 million during the tenth year of its Plant Genome Research Program (PGRP). These awards - which cover two to five years and range from $400,000 to $7.9 million - support research and tool development to further knowledge of genome structure and function. They will also increase understanding of gene function and interactions between genomes and the environment in economically vital crop plants. The new awards - made to 45 institutions in 28 states - include international groups of scientists from Asia, Australia and Europe.

The wealth of genomics tools and sequence resources developed over the past ten years of the PGRP have opened up exciting, new comparative approaches in plant biology. PGRP researchers continue to uncover gene networks that regulate plant development and growth in concert with environmental signals, such as temperature, light, disease and pests.

Amongst the projects of immediate interest to the emerging biofuels and bioeconomy are:

A four-year, $5.5 million project to make a comparative analysis of C3 and C4 leaf development in rice, sorghum and maize, led by Timothy Nelson, which involves Yale University, Boyce Thompson Institute, Cornell University and Iowa State University:
C4-type plants such as maize, sorghum and several promising biofuel feedstocks possess a set of complex traits that greatly enhance their efficiency of carbon-fixation, water and nitrogen use, and performance in high temperatures and light intensities, in comparison to C3-type plants such as rice and many temperate grasses. The key C4 traits are (1) specialization and cooperation of two leaf photosynthetic cell types (mesophyll and bundle sheath) for carbon fixation and photosynthesis, (2) enhanced movement of metabolites between cooperating cells, and (3) very high density of leaf venation. These C4 traits appear to be regulatory enhancements of features already present in less-efficient C3 plants, but regulated in different patterns. Although C4 plants have evolved at least 50 times independently in various taxonomic groups, the molecular basis of key C4 traits is insufficiently understood to permit their introduction into important C3 plants to enhance their performance as agricultural or biofuel feedstocks.

This project will compare the leaves of rice (a C3 grass), maize (a moderate C4 grass) and sorghum (an extreme C4 grass). The abundance and spectrum of gene transcripts, proteins and metabolites will be compared along a developmental gradient from immature tissues at leaf base to mature tissues at the leaf tip. To align the gradients of the three species, markers for developmental time points in gene expression, protein accumulation, sink-source transition and cell wall specialization will be employed. Mesophyll and bundle sheath cells will be obtained from each leaf stage by laser microdissection, and their whole genome RNA transcripts, proteomes (including modifications), and selected metabolites (related to photosynthesis) will be profiled and compared. Two hypotheses will be tested by the comparative analysis of the corresponding C3 and C4 plant datasets: (1) To produce C4 traits, plants use networks of genes, proteins, and metabolites that are already present in C3 plants, and (2) C4 features are plastic and expressed in a degree that depends on environment and developmental stage. This analysis should identify the regulatory points that are potential targets for the production of C4 traits in C3 species.

A four-year, $4.6 million grant to a project led by John Browse at Washington State University to continue research that uses biochemical genomics to reveal components of biosynthesis pathways necessary to produce novel fatty acids in oilseeds:
The goal of this project is to use genomics to access the network of genes and proteins that operate chemical factories to synthesize and accumulate novel fatty acids in seeds. Evolution of new enzyme functions, together with the co-evolution of additional biochemical and cell biological traits, has provided hundreds of potentially useful chemicals in seed oils, including the hydroxylated, conjugated and cyclopropane fatty acids to be studied in this project.

Providing a detailed description of genes and proteins required for optimal pathway function will require the integrated deployment of four strategies: a) Investigate and optimize the activities of enzymes for unusual fatty acid synthesis using bioinformatics and protein engineering. b) Carry out extensive sequencing of seeds sampled through the period of oil synthesis, and use functional genomic screens to identify co-evolved enzymes (and other protein functions) required for incorporation of the novel fatty acid into the oil. c) Perform biochemical analysis of the identified proteins and quantify their contributions to the accumulation of unusual fatty acids through expression in transgenic plants. d) Analyze protein-protein interactions in membranes to gain insight how these pathways are physically organized. Finally, the accumulated knowledge will be tested through experiments to reconstruct the native pathways in transgenic plants using expression of multiple genes and pathway engineering. The discoveries that result from this project will yield an understanding of the underlying principles of how pathways evolved for the synthesis of novel seed oils.

The basic knowledge from this project will enable the design of a new generation of specialty crops that will become the green factories of the future, providing for the production of industrial lubicants, solvent oils and biodiesel.


A four-year, $1.7 million grant to a University of Alaska Fairbanks and University of Minnesota-Twin Cities project led by Matthew Olson to study population genomics of cold adaptation in poplar:
Populus species are economically, ecologically, and environmentally important; they are harvested for paper pulp and particle board production, and hold potential for playing important roles in CO2 biosequestration and biofuel production:
:: :: :: :: :: :: :: :: :: ::

Populus also is the model organism for hardwood tree genomics and physiology. Population genetic tools are increasingly useful for identifying genes that underlie variation in ecologically and economically important traits, but are not presently available in Populus. This project will develop these tools for Populus balsamifera, use them to identify the genetic basis for phenotypic variation in bud set (an important determinant of cold adaptation and growth rate). This research also will test whether the same genes responsible for variation and adaptive evolution of bud set in North American P. balsamifera and European P. tremula.

These objectives will be accomplished through collaboration with Canadian researchers who are establishing long-term common gardens of P. balsamifera. These common gardens will be maintained as a long term resource and are available to the wider scientific community; therefore, the data we generate will greatly facilitate future genotype-phenotype association analyses on additional economically and ecologically important traits (wood density, drought tolerance, etc.). The comparative population genomic analyses of adaptation to northern latitudes will be accomplished through collaboration with colleagues at the University of Umea, Sweden, who are conducting complementary research in European aspen (P. tremula).

A three-year, $2.5 million grant to The Grass Regulome Initiative which will focus on integrating control of gene expression and agronomic traits across the grasses; the project is led by Erich Grotewold and involves the Ohio State University and the University of Toledo (earlier a similar project led by Gronewold - "Engineering phenolic metabolism in the grasses using transcription factors"- received a grant from the U.S. Department of Energy):
An emerging theme in plant systems biology is establishing the architecture of regulatory networks and linking system components to agronomic traits. The goal of this project is to provide a concerted effort to perform comparative transcriptional genomics across several grass crops (maize, sorghum, sugarcane and rice), combining the development of experimental tools and bioinformatic resources to discover and display regulatory motifs. The Grass Regulatory Information Service (GRASSIUS) will be implemented as a public web resource that integrates sequence and expression information on transcription factors (TFs), their DNA-binding properties, TF binding sites in the genome, the genes that TFs target for regulation and the regulatory motifs in which they participate.

A method for the in vivo identification of direct targets for TFs, which should be applicable even in the absence of a complete genome sequence, will be developed and applied towards the identification of direct targets for a small subset of maize, rice, sorghum and sugarcane TFs. Together with the generation of a large centralized collection of plasmids harboring open reading frames for several TFs and antibodies to a subset of them, this project will facilitate the community-wide identification of protein-DNA interactions, essential for establishing the grass regulatory map. The experimental and computational integration of regulatory motifs with QTLs will provide an accelerated translation of findings derived from these studies to issues of agronomic relevance.

Benefiting from the increasing amount of genome sequence available, this proposal integrates genetics, molecular biology, biochemistry, statistics, bioinformatics and computer sciences in establishing the architecture of the regulatory networks that control plant gene expression, in a pioneering effort to launch the comparative transcriptional genomics field to important grass crops.

And 4 major projects on maize genomics (maize artificial chromosomes; functional genomics of maize gametophytes; construction of comprehensive sequence indexed transposon resources for maize; cell fate acquisition in maize).
Plant biologists continue to exploit genomics tools and sequence resources in new and innovative ways. It's exciting to see research involving biologists and mathematicians, computer scientists and engineers, all working to address major unanswered questions in plant biology. These latest projects will also have a significant impact on how we train the next generation of plant scientists to carry out research at the cutting edge of the biological sciences. - James Collins, NSF assistant director for biological sciences.
PGRP is also continuing to support the development of tools to enable researchers to make breakthroughs in understanding the structure and function of economically important plants - from the gene level to the whole plant. Example projects include:
  • A multidisciplinary team of investigators at the University of Wisconsin-Madison will develop cutting-edge technology using cameras, robotics and computational tools to enable high-throughput analysis of traits in mutant or naturally varying plant populations.
  • A project led by the Dana-Farber Cancer Institute is using Arabidopsis and rice genomic resources to produce a plant "interactome," a map of all protein-protein interactions. This map will provide scientists with testable predictions of how genes and the proteins they encode interact to carry out complex functions within a plant cell.
The PGRP, which was established in 1998 as part of the coordinated National Plant Genome Initiative by the Interagency Working Group on Plant Genomes of the National Science and Technology Council, has the long-term goal of advancing the understanding of the structure and function of genomes of plants of economic importance.

References:
National Science Foundation: NSF Awards 26 New Grants to Seed Plant Systems Biology - October 11, 2007.

National Science Foundation: overview of 2007 PGRP Awards.


0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home