<body> -------------------
Contact Us       Consulting       Projects       Our Goals       About Us
home » Archive »
Nature Blog Network


    Spanish company Ferry Group is to invest €42/US$55.2 million in a project for the production of biomass fuel pellets in Bulgaria. The 3-year project consists of establishing plantations of paulownia trees near the city of Tran. Paulownia is a fast-growing tree used for the commercial production of fuel pellets. Dnevnik - Feb. 20, 2007.

    Hungary's BHD Hõerõmû Zrt. is to build a 35 billion Forint (€138/US$182 million) commercial biomass-fired power plant with a maximum output of 49.9 MW in Szerencs (northeast Hungary). Portfolio.hu - Feb. 20, 2007.

    Tonight at 9pm, BBC Two will be showing a program on geo-engineering techniques to 'save' the planet from global warming. Five of the world's top scientists propose five radical scientific inventions which could stop climate change dead in its tracks. The ideas include: a giant sunshade in space to filter out the sun's rays and help cool us down; forests of artificial trees that would breath in carbon dioxide and stop the green house effect and a fleet futuristic yachts that will shoot salt water into the clouds thickening them and cooling the planet. BBC News - Feb. 19, 2007.

    Archer Daniels Midland, the largest U.S. ethanol producer, is planning to open a biodiesel plant in Indonesia with Wilmar International Ltd. this year and a wholly owned biodiesel plant in Brazil before July, the Wall Street Journal reported on Thursday. The Brazil plant is expected to be the nation's largest, the paper said. Worldwide, the company projects a fourfold rise in biodiesel production over the next five years. ADM was not immediately available to comment. Reuters - Feb. 16, 2007.

    Finnish engineering firm Pöyry Oyj has been awarded contracts by San Carlos Bioenergy Inc. to provide services for the first bioethanol plant in the Philippines. The aggregate contract value is EUR 10 million. The plant is to be build in the Province of San Carlos on the north-eastern tip of Negros Island. The plant is expected to deliver 120,000 liters/day of bioethanol and 4 MW of excess power to the grid. Kauppalehti Online - Feb. 15, 2007.

    In order to reduce fuel costs, a Mukono-based flower farm which exports to Europe, is building its own biodiesel plant, based on using Jatropha curcas seeds. It estimates the fuel will cut production costs by up to 20%. New Vision (Kampala, Uganda) - Feb. 12, 2007.

    The Tokyo Metropolitan Government has decided to use 10% biodiesel in its fleet of public buses. The world's largest city is served by the Toei Bus System, which is used by some 570,000 people daily. Digital World Tokyo - Feb. 12, 2007.

    Fearing lack of electricity supply in South Africa and a price tag on CO2, WSP Group SA is investing in a biomass power plant that will replace coal in the Letaba Citrus juicing plant which is located in Tzaneen. Mining Weekly - Feb. 8, 2007.

    In what it calls an important addition to its global R&D capabilities, Archer Daniels Midland (ADM) is to build a new bioenergy research center in Hamburg, Germany. World Grain - Feb. 5, 2007.

    EthaBlog's Henrique Oliveira interviews leading Brazilian biofuels consultant Marcelo Coelho who offers insights into the (foreign) investment dynamics in the sector, the history of Brazilian ethanol and the relationship between oil price trends and biofuels. EthaBlog - Feb. 2, 2007.

    The government of Taiwan has announced its renewable energy target: 12% of all energy should come from renewables by 2020. The plan is expected to revitalise Taiwan's agricultural sector and to boost its nascent biomass industry. China Post - Feb. 2, 2007.

    Production at Cantarell, the world's second biggest oil field, declined by 500,000 barrels or 25% last year. This virtual collapse is unfolding much faster than projections from Mexico's state-run oil giant Petroleos Mexicanos. Wall Street Journal - Jan. 30, 2007.

    Dubai-based and AIM listed Teejori Ltd. has entered into an agreement to invest €6 million to acquire a 16.7% interest in Bekon, which developed two proprietary technologies enabling dry-fermentation of biomass. Both technologies allow it to design, establish and operate biogas plants in a highly efficient way. Dry-Fermentation offers significant advantages to the existing widely used wet fermentation process of converting biomass to biogas. Ame Info - Jan. 22, 2007.

    Hindustan Petroleum Corporation Limited is to build a biofuel production plant in the tribal belt of Banswara, Rajasthan, India. The petroleum company has acquired 20,000 hectares of low value land in the district, which it plans to commit to growing jatropha and other biofuel crops. The company's chairman said HPCL was also looking for similar wasteland in the state of Chhattisgarh. Zee News - Jan. 15, 2007.

    The Zimbabwean national police begins planting jatropha for a pilot project that must result in a daily production of 1000 liters of biodiesel. The Herald (Harare), Via AllAfrica - Jan. 12, 2007.

    In order to meet its Kyoto obligations and to cut dependence on oil, Japan has started importing biofuels from Brazil and elsewhere. And even though the country has limited local bioenergy potential, its Agriculture Ministry will begin a search for natural resources, including farm products and their residues, that can be used to make biofuels in Japan. To this end, studies will be conducted at 900 locations nationwide over a three-year period. The Japan Times - Jan. 12, 2007.

    Chrysler's chief economist Van Jolissaint has launched an arrogant attack on "quasi-hysterical Europeans" and their attitudes to global warming, calling the Stern Review 'dubious'. The remarks illustrate the yawning gap between opinions on climate change among Europeans and Americans, but they also strengthen the view that announcements by US car makers and legislators about the development of green vehicles are nothing more than window dressing. Today, the EU announced its comprehensive energy policy for the 21st century, with climate change at the center of it. BBC News - Jan. 10, 2007.

    The new Canadian government is investing $840,000 into BioMatera Inc. a biotech company that develops industrial biopolymers (such as PHA) that have wide-scale applications in the plastics, farmaceutical and cosmetics industries. Plant-based biopolymers such as PHA are biodegradable and renewable. Government of Canada - Jan. 9, 2007.


Creative Commons License


Thursday, February 01, 2007

Net energy of biofuels made from crops grown in the North comes at a high cost - study

A new economic analysis by Oregon State University once again (earlier post) confirms that large-scale production of biofuels made from crops grown in temperate climates (North America, Europe) comes at a high cost. Results of the study suggest that the “net energy” of those biofuels is expensive when all costs of their production and delivery are taken into account. Biofuels should be produced in the tropics and the subtropics instead, where they yield low-cost fuels with a very positive energy balance.

The study [*.pdf] was released this week by a team of economists in OSU’s College of Agricultural Sciences that included William Jaeger, Robin Cross and Thorsten Egelkraut. By subtracting the energy spent to produce raw materials and to process and transport the biofuel, the researchers found that the cost of the net gain in energy for these biofuels may be more than seven times higher in some cases when compared to gasoline.

The economists examined three biofuel options for Oregon: ethanol made from corn, ethanol made from wood cellulose, and biodiesel made from canola (rapeseed).

For each option, the researchers examined the cost of production, its contribution to energy independence and its environmental impact in terms of greenhouse gas emissions. They calculated “net energy” as the amount of energy in the biofuel minus the amount of energy it takes to produce, process, and transport the biofuel. Another term often used to express this value is "Energy Returned on Energy Invested", or 'EROEI'.

Their results suggest the following:
  • ethanol made from wood cellulose produced the greatest net energy, netting 84 percent of its energy after production fuel costs were subtracted (EROEI: 1.84 to 1).
  • biodiesel made from canola netted 69 percent of its energy after subtracting production fuel costs (EROEI: 1.69 to 10)
  • ethanol made from corn netted a mere 20 percent of its energy after subtracting the energy spent to produce it (EROEI: 1.20 to 1).
  • compare this with ethanol made from sugarcane in Brazil (EROEI: 8.3 to 1 up to 10.2 to 1) (earlier post); if this ethanol were to be exported to the US, that is transported in tankers over the Atlantic, the EROEI would only be marginally affected and remain many times higher than that of any biofuel made in the U.S. (earlier post).
The economists combined net energy calculations with estimates of production costs and greenhouse gas emissions and compared the results with similar calculations for gasoline and diesel. They found that each of the three biofuel options would reduce greenhouse gas emissions, but at a significant cost. For example, the cost of reducing greenhouse gas emissions by switching to corn-based ethanol was calculated to be more than 200 times higher than other existing policy options to reduce greenhouse gas emissions:
:: :: :: :: :: :: :: :: :: :: :: :: :: ::


A number of factors limit the economic viability of biofuels in Oregon, Jaeger explained. For example, relatively little corn is grown in Oregon compared to the Midwest, so corn for ethanol would need to be imported from other parts of the country. Canola and wood-based cellulose are both available in Oregon and Washington; however the production of canola is limited and the production of wood-based ethanol is not yet commercially viable.

The co-products or byproducts created during biofuel production add another variable to the economic picture.

“Many of these products – meal, glycerin or lignin – have energy and market value in their own right,” Jaeger said. “Canola meal left over after extracting the oil can be fed to livestock. But, if canola were to contribute just one percent of Oregon’s current petroleum energy consumption, enough canola meal would be produced to feed five times the number of cows we currently raise in the state.”

Better alternatives
Besides importing energy efficient biofuels from the South, the authors showed there are other alternatives that make more sense than relying on inefficient biofuels made in the North. They calculated that the net energy benefits from increasing automobile fuel efficiency by one mile per gallon would be equivalent to three or four corn ethanol plants or 13 biodiesel plants like those evaluated in their report.

The study focused on three large-scale biofuels options, but did not evaluate on-farm or small-scale production and distribution. The authors point out that their estimates are based on current technologies and prices, and that future trends could shift the prospects for these biofuels positively or negatively.

Based on their analysis, the authors concluded that these three biofuel options appear to be a costly way to achieve limited progress toward energy independence or reduce greenhouse emissions in Oregon.

“Biofuels and bioproducts have an important role to play in Oregon’s future, but Oregon’s approach will be different than the Midwest’s,” said Bill Boggess, executive associate dean of OSU’s College of Agricultural Sciences. “We need to carefully consider what bioproducts make sense in Oregon for the long-term and focus research on economically sustainable bio-based energy systems.”

More information
Oregon State University, Agricultural and Resource Economics: “Biofuel Potential in Oregon: Background and Evaluation Options” [*.pdf]

0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home